ADULT INTELLIGENCE

ADULT

INTELLIGENCE

A PSYCHOLOGICAL STUDY OF

TEST PERFORMANCES

By Theodore Wrcisenburg, M.D., Anne Roc, Ph.D., and Katharine E. McBride, Ph.D.

NLW york

THE COMIMONWEAITTH FUND

London Mumphry Mriford Oxfund Unitrinty Prest 1936

COPYKGGIT, 1936, EYTHE COMAYONWEMETH FUND SECOND PRNTHVC JEtI; 1937

an extensive battery of tests. The battery arranged therefore included tests of the simple speech processes; of more complicated processes requiring language facility and "verbal intelligente"; of attainment in reading, writing, spelling, and arithmetic; and of performance on non-verbal tests demanding intelligent behavior. On the basis of these tests, studies were made of 234 aphasic and control cases. The results for the aphasic and the apraxic or agnosic cases, as well as for the control cases of unilateral terebral lesion without these disorders, have been reported in a separate volume.: In every case the abnormal performances were interpreted in the light of the behavior of the normal subjects studied by the same methods.

The work with the normal adults was begun in r92g by Mildred Willard Gardincr, M.A., who examined approximately half of the subjects. The remainder were examined by Anne Roc, Ph.D.
In order to make satisfactory comparisons between normal and abnormal individuals, the groups had to be as nearly as possible equivalent in age and in educational, ocetupational, and social status. The majority of the aphasie and other cases with cerebral lesion were studied in three Philadelphia hospitals; the Orthopedic Hospital and Infirmary for Nervous Dis eases, the Graduate Hospital of the University of Pennsylvania, and the Philadelphia General Hospital. However paradoxical it seemed, it was clear that the socalled normal adults would have to be selected from among the patients admitted to the same hospitals, for only thus could a randora seleation from similar levels of the population be obtained, As will be described in Chapter II, the normal cases were chosen from the surgical or orthopedie wards and were aecepted for study only if the record was free of neurological or mental disorders and the physical eondition satisfactory for good work,
For permission to study the patients selected for the normal group the authors are indebred to Dr. Wilizam J, Taylor, the late Dr. A. P. C. Ashhurst, Dr. A. Bruce Gill, and Dr. Ralph Pemberton at the Orthopedic Hospital and Infirmary for Nervous Discases; the late Dr. J. B. Carnett, Dr. W. G. Elmer, Dr. W. E. Lee, and Dr. H. I. Bockus at the Graduate Hospital; and to Dr. E. L. Elizson, Dr, H. R. Owen, Dr. M. Behrend, Dr. J. O. Bower, Dr. J. T. Rugh, and Dr. H. M. Righter at the Philadelphia General Hospital. Dr. W, G. Turnbull at the Philadelphia General Hospital very hindly made the necessary arrangements there. The authors are

[^0]changes in mental functioning. From the point of view of work with the normal, much of the material is particularly timely for it can be applied in the adult education projects which are now assuming such a promineot place in American life. In maoy cases adults, like children entering a school, must be given preliminary tests to provide for a satisfactory grouping of individuals of different levels of development. In all cases preliminary examination is sequired to determine their comprehension in reading, their language facility, and various other factors on which their success in the work will depend. From the point of view of studies of the abnormal, it must be noted particularly that standards of intellectual performances for the "avcrage man" are still little known and that they have not before been determined for most of the individual tests included io this battery. Yet some of these are tests of primary importance in work with the abnormal, where the purpose is not ouly the determination of the intellectual level, but the qualitative analysis of the patient's performance, his methods of work, and his attitudes.
The monograph also concains analyses of the results for their bearing on a number of important problems: the comparative findings for the groups of men and women, the relationship of age and test performance, the fastor of education, the differences in test performance in certain occupational classes, the relative standing of the individual on a wide variety of tests, and, finally, the relationship between the different test performaness for the group as a whole. The findings oo all these questions receive general discussion in Chapter IX, and the reader who is interested in the major contributions of the study rather than the detailed results is referred especially to this chapter.
It had been Dr. Weiseoburg's plan to write the preface for this monograph, and io it to stress the practical significance of the results for the psychiatrist, the educator, aod the prychologist. With bis death, before the final draft of the book was completed, the prefice had not yet been written. I have iocluded the points he had intended to cover, in so far as I know them, but I deeply regret that the work has not had the benefit of his final criticisms, for ooe of the qualitues which made him great as a director of research was his urusual ability to synhesize the results of a scienuific investigatioo aod foresee both their theoretical and their practical import.

K. E. McB.

CONTENTS

Preface v
I. A Critical Sexyey of Stcimes Relatisc to Adult Intelligence 1
3. Intraduction I
2. Development of mental eesting in eollege groups 2
3. Intelligence tests in the army 7
4. Intelligence tests in industry 12
5. Sex diffetences in intelifgence test performances 13
6. The growth and decline of intelligence 25
II. Tifs Selectiov asp Coveposinov of tie Group Stedild 33
ग. Selection of the group 33
2. Composition of the group 3^{3}
3. Cotrparative findings in four diagnostic groups 44
4. Comment on the sample 46
111. The Test 5 !
r. Basis for selection $5 r$
2. Outline of tests 52
3. Examination periods 53
IV. Test Resulits 54

1. Language inteligence tests 54
2. Educational achievement tests 62
3. Non-language tests 66
V. Comparative Findings for Men amo Women 69
4. Mearn scoses 69
5. Variabiitics 70
VI. Differenges in Test Levels in Diffraknt Age Groupp 72
6. Findings for the age decates twemy through Efiy 72
7. Findings for the nge groups twenty through thinty-four and forty- five through fifty-nine 75
Vil. Tie Relatonship betveen Vartoes Pekformance Levels in the Indintiual Case 78
8. Method of analysis 7^{8}
9. Results 79
VIll. Correlational Findtivas 82
10. Correlations with age 82
11. Correlations with education 83
12. Correlations with occupation 86
13. Intercorrclations between the most important tests 88
IX. Survey of the Finomos asd Them Sicnificasice 102
14. Adult performance levels 102
15. Coraparative findings for men and women 106
16. Age and vest performazes 107
17. Relationships between various performance levels in the individual case 109
18. Education and test performance 110
19. Occupation and test performance 118
20. Relationships between various test performances 179
X. Covelusiovs 122
Appendu: Description of thes Tests 130
21. Language intelligence tests 230 230
22. Educational achievement tess ${ }^{3} 3^{8}$
23. Non-language tests 139
Bibliocikapty 143
1mdex 151

TABLES

1. The reliability of differences in median Army Apha scores be- tween successise one-ycar groups (Teagarden) 18
II. Ages at which highest mean scores are found in different types of tests (Willoughby and Jones and Conrad) 26
III. Scores by decades for $6: 6$ adults, City B (Table VI, Miles and Miles, abbreviated) 29
IV. Distributions by age for the three hospital groups and for the total test group 41
V. Distributions by school grade reached for the three hospital groups and for the total test group 47
VI. Distributions by Taussig occupational classification for the three hospital groups and for the total test group 43
V1I. Distributions by Bare occupational ratings for the three hospital groups and for the total test group 43
VIII. Comparative findings for forty-five cases distributed by medical diagnosis 45
DX. Petcentage distribution by occupation of the natue white popu- lation of Philade! phia and of the employed members of the test group 47
X. Percentage distribution by school grade reached of males in the test group and of the native-white draff of the American Army 49
XI. Range of scores, mean scores, zed sigmas on all tests of the battery 55
XII. Distribution of scores on the Kelley Trabue Completion Exer- cise Beta 57
XIII. Distribution of scores on the Stanford Binet Vocabulary Test 57
XIV. Distribution of scores on the Therndike Test of Word Knowl. edge 58
XV, Distribution of scates on the Stanford Binet Scale 59
XVI. Percentage of the test group passing each item of the Stanford Binet Scale $6 I$

TABLES

XVII. Distribution of scores on the Thorndike McCall Reading Seale 63
XVIII. Distribution of scores on the Stanford Achievement Arithmetic Computation Test 64
XIX. Distribution of scores on the Stanford Achievement Arithmetic Reasoning Test 66
XX. Distribution of scores on the Pintner Non-Language Mental Test 67
XXI. Distribution of scores on the Partews Maze Test 67
XXII. Mean scores and sigmas for males and females 70
XXIII. Mean scores for the age decade groups and the correlation of each variable with age 73
XXIV. Mican scores for ages twenty through thinty-four and forty.five through fifty-nine, and values for the significance of the differ- ences between the means 7^{6}
XXV. Correlations of the average deviation of the standard measures with other variables 80
XXVI. Correlations of test results with age, achool grade reached, and secupational rating on the Barr Scale 83
XXVII. Partial correlations indieating the relative importance of the factors of school grade reached and test intelligence in vocabur. lary and educational achievement test seores 84
XXVIII. Contingency tables for Taussig ratings and various test scores 87
KXIX. Intercorrelations of the scores of the messs inaportant tests of the battery 88
XXX. Correlations with age and intertest correlations of the scores of subreests of the Pintaer Non-Language (56 cases) 99
XXXI. Mean scores on the most importane tests for patients distributed by hospital source 103

FIGURES

r. Correlation between the Stanford Binet and the Printed Analogies .Tests 89
2. Correlation between the Stanford Binet and the Goodenough Drawing Tests 90
3. Correlation between the Kelley Trabue Completion Beta and the Bintner Non-Language Tests 92
4. Correlation between the Kelley Trabue Completion Beta and the Porteus Maze Tests 94
5. Correlation between the Thorndike McCall Reading Scale and the Arithmetic Computation Test 94
6. Correlation between the Printed Analogies Test and the Thomdike Test of Word Knowledge 96
7. Correlation between the Pristed Analogies and the Arithmetic Com- putation Tests 97
8. Correlation between the Printed Analogies and the Pintner Non- Language Tests 97
9. Correlation between the Printed Analogies and the Porteus Maze Tests 98
10. Relations berween educational and various test levels. One case at third grade level and two at fifih 111
in. Relations between educational and various test levels. Four cases at sixth grade level and one at seventh 212
12. Relations between educational and various test levels. Fite cases at eighth grade level $1{ }^{1} 3$
13. Relations between educational and various test levels. One case at ninth grade level and two at twelfh 114
r4. Relations between educational and various test levels. Two cases with equivalent of foutteen years' schooling and one with equivalent of sizten 115

A CRITICAL SURVEY OF STUDIES RELATING TO ADULT INTELLIGENCE

1. Introduction
2. Development of Mental Testing in College Groups
3. Intelligence Tests in the Army
4. Intelligence Tests in Industry
5. Sex Differences in Intelligence Test Performances
6. The Growth and Deeline of Intelligence

1. intropuction

WITHIN the last few years the problems of adult intelligence have for the first time in the history of "mental testing" been receiving the study their importance merits. It is true that they came into great prominence during the War when Yerkes and others undertook the colossal task of arranging intelligence tests for all grades of adults from the dullest to the most gifted, and the firther task of having these tests quickly and well administered and interpreted. ${ }^{1}$ Bur the primary purpose of the Army survey was a rough determination of the grade of intelligence for each of the nearly two million men tested, and there was no time to give to finer points, Thus while the Army data demonstrate the general mental level of the average man to the comparanve satisfaction of the psychologist, if not of the layman, they do not provide material for study of the further prohlems which are coming to occupy the center of the feld. The question of the relationship of different mental abdines, wheh antracts so much tesearch at the present time, has been studied on the basss of the Army data, notably by Spearman, Kelley, and Brugham; but most investigators agree with Kelley that the material is not really suritabie for such analysis.' The question as to the course of different test performances whth age cannot be solved on the basis of the Army findings, for at different ages there were probably differing selective factors which made the various age groups incomparable.
The recent studies of adult intelligence have yielded important data on

[^1]
STUDIES OF ADULT INTELLIGENCE

the relationship between age and various test performances. The two outstanding contributions are the large survey of a New England community made by Jones and Conrad ${ }^{3}$ by means of the Army Alpha Test and the Maturity Study made by Miles at Stanford. The first is unique among studies of adults beciuse it is a survey of an almost complete community. For the given racial and cultural group it yields decisive information on the typical adult performance and the range of performances. Furthermore, in so far as the cight sub-tests of the Army Alpha permit, the study furnishes data on the characteristies of different types of test performance. The length of the examination had of course to be limited to make possible the testing of large numbers at one sitting and to ensure their cooperation.
The Maturity Study at Stanford is also based on large numbers of adults, but they are probably less representative of the population at large than those examined by Jones. In the first testing program in 193° approximately 800 took the brief inteligence test, a fificen-minute form of the Otis SclfAdministering Test, and in addition certain brief tests of other functions, including pereeption, motility, memory, and imagination. Other large groups of subjects were given various tests in the following years. The testing progtam as a whole was more extensive than that of any other investigation. It must be noted however, first, that the attempt to cover a large num. ber of different types of performance in a short time resulted in the use of many extremely brief tests; and, second, that the results of eertain parts of the investigation must be interpreted separately, for not all of the groups entering into the study were comparable.
Both these investigations will be discussed in greater detail in later soctions of the chapter, which are intended to survey the various lines of work contributing directly or indirectly to the study of adult intelligence.

2. nevelopment of mental testing in college croups

Test situations which would bring out individual differences in mental traits are by no means inventions of modern science. One recalls Gideon's method of reducing his force of 10,000 before the attack on the Midianites,
${ }^{5}$ H. E. Jones and H. S. Conrad, The Growih and Dechiae of Inteltigener, Genet, Psjchol. Monog , 1933. 13, 223-298.
-C. C. and W. R. Miles, The Correlation of Invellyence Scorce and caronological afe from Larly to Late Maturity, Amer. I. Psychol., 193x, 47, 4;-is3: W. R. Miles, Age and Human Alisty, Psychol. Rer. 1933. 40, 93-123-
lated with themselves to a considerable degres, did oot correlate with the mental tests. The almost compiete lack of correlation was a serious blow to the laboratory mental tests, for it seemed obrious that the grades were in large part dependent upoo intelligence.

Need for the derelopment of more satisfactory tests then beame even more evident, and gradually, with increasiog work oo the more complex processes, such tests began to appear. Io 19 no Goddard revised the Binet Scale for use in the United States. In 1913 Calfee, Waugb, Eiogham, Bell, Kitsoo, and others reported the findings for college students oo complex tests such as directions, sentence completions, mired relatioos, and logical memory. All this work has been well revicsed by Carothers as a preliminary to a report of her own study of 200 Barnard freshmen in 1950 and $1916{ }^{33}$ She gave nineteen tests which differed considembly in their nature and complexity from those Wissler had used ffieca years before. Caroubers' tests fell, according to their intercorrclations, into five groups:
I. Coordinatioo 2nd Tapping
11. Cancellation, Checking, Color Naming, Word Naming, and Substitution
III. Direcions, Opposites, Veb-Objert, Mised Eeiaions, Word Building, and Completion
IV. Word Recollection, Word Recognition, Legial Recollection, and Logical Recognition
V. Informarion and Vocabulary Miscellanequs: Digis Span and Knar Cute
It is interescing to note that the author looked for a general common factor bur found no evidence of one. Her correhtions with a composite score ${ }^{16}$ of all the groups of academic subjects were higher than Wissler's, a natural result of the tppes of tests used. They ranged froma +12 to +27 .
In 1g18, largely as a resulr of the suocessful use of the Thorndile Test of Mental Alertness with the Student Army Training Corps, the Columbia Ecculty voted an alternative method of admissiou, to inelude an intelligence test. ${ }^{17}$ From that time on intelligence iests betarme more and more important as supplementary criteria, and sanactimes constituted the chief criterion

[^2]for college admission. The Army Alpha and the Thorndike College Entrance Examination were the most widely used, particularly in the carlier years. At present some colleges have their own tests, modeled largely upon these two. The colleges which are members of the College Entrance Examination Board require for admission not only subject achievement tests but also the Scholastic Aptitude Test, the first form of which was constructed for the Board in 1925 by Brigham, Angier, McPhaill, Rogers, and Stone. This test, which at first had nine sub-tests, has been subjected to more extensive and elaborate statistical analysis than any other ever introduced, and has been continuously modified. At the present time it consists of two sections, verbal and mathematical. The verbal section contains three sub-tests: I) Antonyms, four words, among which a pair of opposites is to be found; 2) Double definitions, a modified completion test; and 3) Paragraph reading. The mathematical section consists of $x 00$ items. ${ }^{28}$ The large population (8,000 to 9,000 a year) to which these tests have been given is, of eourse, a bighly selected one, and the results show only the intellecturl characteristics of the young adult of superior mental ability.

3. INTELLICENCE TESTS IN THE ARMY

The first and largest study of adult intelligence ever undertaken was made in the United States Artuy during the World War, It was a radıea! innovation in military procedure. In the years just before the War there had been suggestions in both France and Germany that mental test methods would aid in the selection of men fit for miltary service. The French authorities, however, ssw no merit in the scheme which Binet and Simon proposed in 1910, ${ }^{13}$ and apparently no extensive use was made in Germany of any of the procedures suggested for determining the intellectual status of conscripts and eliminating the low grade. ${ }^{20}$
When the United States entered the War man April 6, 2917, a group of psychologists then meeting at Harvard appointed a committee to gather information on the part psychology could play in the preparations for war. In

[^3]the early summer a group mental examination was arranged by Yerkes, Bingham, Goddard, Haines, Terman, Wells, and Whipple, and tried out with such dispatch that by August first a report embodying the plan for extensive testing and preseoting the results of the trial examinations was in the hands of the Surgeon General, λ detailed review of the problems involved has been presented by Yerkes in the fifeenth volume of the Mernoirs of the Natiooal Academy of Sciences.
Between September 1917 a0d January 1919, 1,726,966 men were examined. ${ }^{11}$ Most of them were given the Army A lpha, some the Beta, and some were also given a series of iodividual tests-the Staoford Binet and a long series of performance tests. The tremendous number of secords obsained on the A !pha Test makes it of greatest interest for any study of adult intelligence. The test in its final form was composed of the following sub-rests, the origins of which are also given below :2

1. Oral dizections: adapted from Abelson, Otis, Woodworth, and Weells.
2. Arithmetical reasoning.
3. Practical judgment: adapted from Binet "comprehension questions" and Bonser "seletive judgment" tests.
4. Symonfro-sotenfm: Otis tes.
5. Disarringed sentenees: Otis adaptaion of the Einet test
6. Number series compiction: adapted from Rogers" misxing number rest
7. Analogies: Otis, Bingham, and Thurstone form of test.
8. Information: suggested by Wells, Bingham, and Whippit.

The distributioo of intelligence in the United States, as indiented by the Army results, showed a marked posivive sherr, a fact which has led to tootroversy as to whether the true distribution of intelligeoce, which is apparently normal for children, was actually shewed in adulf groups, or whether the results depended partly on factors in the sampling. Terman contended that the Army draft was not represencative because, in his opinion, a large

 camps, prorated by stats, giving 96,354 records for witc rectits, 25.392 For Negro recturs, 15.528 for white officers, zad 24,205 for whive permaneat organizatrots. To these recorts were anded those of a special exprimental group of 1,077 whate secruts; thest brought the grand total to 152,526 .

${ }^{21}$ Mem. Nat. Acad Sein 3921, 15, 300-307

The origunal tot (Amy tert a) monsised of wea sub-iste. After a preliminary trith these were cot to eight sult-tests widh a conal of 213 items, and the tests recined were sightly revised to correct fayts found in the origind zeries
proportion of thosegranted exemptions were men of superior intelligence. ${ }^{23}$ Lincoln disagreed and presented arguments to show that the exempted groups were not superior. ${ }^{24}$ There are undoubtedly points on either side, but it seems probable that Lincoln's position is the more justifiable and that the sample is fairly representative and on the whole the most satisfactory ever obtained.

The median Army Alpha score for the native-born white men was 58.9 , while that for the foreign-born white was $46 . \%$ and that for the Negro considerably lower ($3^{8.6}$ for Negroes from northern states and 12.4 for Negroes from southern). On the basis of Stanford Binet Tests of 6_{53} men, Army Alpha scores were transmuted into Stanford Binet equivalents. The central result of this analysis, namely, that the intellegence of the white draft was not much above a thirtecn-year level, is too well known to necessitate restatement. It has not orly been discussed pro and con by psychologists, but has been seized upon by popular writers who have made good copy of the intellectual level of the average man. The height of the popular indignation was reached in Walter Lippmann's papers in the New Republic in 1922 and $1923 .{ }^{23}$ They expressed many criticisms of the meotal testing movernent whieh psychologists in general would reject, but they sounded a note of caution which psychologists as well as laymen were finding extremely necessary, namely that the mental-age method of expressing intelligence test results was likely to be misleading when applied to the scores of adult subjects.
Terman contended that the group of 653 men given the Stanford Binet Scale was not representative of the entire draft, whle Lincoln found that it had a distinctly higher percentage of A and B men (as determined by Alpha seores). The question is of hatde importance in rejation to that of the character of the draft as a whole, for there is nothing to be gained by transmuting Alpha into Stanford Bunet Scores, hut it seems clear that the groups on which the Army standards were established were more nearly representative of the population at large than those on which the Stanford Binet norms were based.
This point was clearly made by Symonds in an article in which he re-

[^4]ported a second approximation to the curve of the distribution of intelligence of the general population ${ }^{26}$ Assuming the normality of the distribution in each occupatiooal group, he weighted the distributions for different groups in the Army according to the numbers allocated to each by the 1910 census. He found that the total curve thus obanined was stroogly skewed to the rigbt; and that "the numbers in low intelligence occupations . . . outweigh the numbers in high intelligence occuparioos." His final Alpha median was 4 , and sigma 43 . These figures correspooded almost exactly to the figures obtained for the Army data when medians for oative-white, foreignborn, and Negro groups were weigbted and combined. Symonds' comments are particularly arresting:

Where shall we go for the average man? The average man has an Army Alpha score of about 48. Fryer's table [sce page 48] shows that representative occepations arouod this level are masons, hospital anendants, statioo agents, miners, teamsters, riggers, boilcrmakers, airplaoe workers, fatory storekeppers, horse shoers, solesclerks, hostlers, barbers, stationary engioeers, cobblers, horse trainers, cateters, brieltasers, auto truck ehauffeurs, farmers, conerete workers, printers, and haleers. To ohtaio representative figures children and aduls should be tested comiog from social groups of which the abore listed occupations are typical, oot high school students and husiness men. There are as many io the population who are less intelligent than the average semi-shitled worlamen io the occupations above as there are of those who are more intelligent. Every person who wishes to obtain nerms or standards representative of the towal populs. tioo can do co better than to consider earefully the oceupation groups in which he proposes to do his sesting. There seems to be oo better ready eriterion.

Another important study based oo the Anmy material, and appearing in the same year as Symoods' article, is Brigham's aoalysis of the mental levels in the various racial groups.: From the point of view of this research the interest lies oot so much in the actual findings for the different racial groups then compared, as in Brigham's later criticism of the work and of the Army Alpha Test in general. ${ }^{23}$ This eriticism is twofold, the first point being that a tetrad analysis of the sub-tests shows disparate group factors and the second that scores in different sections of the Alpha Test were derived from different sub-tests. For these reasons Brigham concluded that the

[^5]scores in the eight sub-tests should never have been added to obtain a total score.

The reaction of the Army examiners to the fact that the different sub-tests did not contribute proportionately to the score at different levels was jast the reverse of Brigham's. ${ }^{29}$ They stated:

The alpha examination itself is not a homogeneous scale, but a composite of eight short scales, each much more nearly homogeneous than the composite total alpha. Alpha must be treated as a composite for two reasons: (1) Certain of its component tests are very muth more difficult than others, so that examinees of less than average intelligence do not in general register their ability in all of the tests. (2) Owing to the fact that the total time allowed for the alpha examination is rigidly apportioned among the eight tests, . . . the collection of the eight tests into an "examination" is mainly a matter of administrative convenience, with relatively litte implieation of quantitative or qualitative equivalence. It follows from what has just been stared that sutjects who are able to score in all of the alpha test obtain total scores that are not comparable with total scores carned by individuals who failed in some of the tests. The season for this differeace is that in obtaining an individual's total score by adding together the scores in each test, seores of o are treated asithmetieally the same as other scores. . . .

The fict that zero points are disposed at different levels of intelligence for different tests would be of no eonsequence if negative seores could be registered; but since they ean not be, the individual who fails to earn a posiuve score and is marked zero is actually thercby given a bonus varying in value disetly with his suupidtry.

It should be admitued that in general practice, similar scores have been taken to represent similar performances on the tests, but in is dificult to see how this situation could invalidate the constants of a frequency distribution obtained from large numbers of cascs.

As to Brigham's first erticisim, that there are disparate group factors in the test, one may point out that " E " from a staxisticizn's point of view and general intelligence from a clinician's point of view are different conceps. Brigham stated the situation elearly when he wrote: ${ }^{5 *}$

Factors have figured so largely in the work of Spearman, Kelley, and others that it is important to understand their nature. Factors are not to be regarded

[^6]as psychological realities, or existences, but merely as certain decimal multipliers which in a given system might be used to account for certain correlation coefficients. One should hunt for factors in the realm of roots, relations, and postulated existences and not in the central nerrous system or the introspective report. The materials from which fectors are derived are coefifients of correla. tion between tests.

The flaws in the Alpha Test and the diffalies in its interpretation are not sufficient ground for throwing the Army results out of court. They are not suited to many of the rypes of analysis one might wish to make, but they still represent the most satisfactory, and indeed the only inder of the intelligence of the American population at large. The importance of the Army Alpha has recently bees emphasized by Weils, who revised the test for the Psychological Corporation. ${ }^{21} \mathrm{He}$ expressed his belief that the old norms tvere still the best arailable and so arranged his revision that the new test would be directly comparable to the old. His views on the chareter of the test are evident in the following statements:

The numerous and zeire prozeny which hare isned from Army Alpha dur. ing iss decade and a thalf of eristence, may find the informed reader sometrhat puzzed as to the reason for its rejurenation. The reasons center around the cossiderations that for all its technical deforts it is still much the most widely standardized of "intelligence" tests, dependiag for this fact on considerations which it is to be hoped will never be reproduced; it is also the most widely known, if not always the best understood with reference to superior educauional and roct. cional groups, and the only oos readily arailable in several sternate forms of substantially equal diticulty. . . .
The evidence is strihing that the relaive diffeulies with the Army Alpha, even in iss present cumbroors and incangruous, eftex laugber-provoling state, ara still those of adoninistration rather than of meaning.

4. ANTHLLGE.Nce TESTS IN ANDUSTRY

The ficld of industrial psychology has much to contribute to a knowledge of cerrain skills, types of befaviot, and spacial abilities at adutt levels, but Jess to contribute on the problemer of adule zzeclligence. Exrept for a short period just after the War, intelligence tests have been little used.se They have been shown to be of value in establishing the limit of inrelligence below which success in the particular occupation is decidedly improbable, and

[^7]in some cases they have established a limit above which interest and satisfaction in the job are unlikely. ${ }^{33}$ Except perhaps in clerical occupations they have shown low correlations with success in work. On the whole their uses bave not been of sufficient immediate value to lead to extensive surveys, and the findings available are on small groups, selected in one regard or another, and not satisfactory material from which to draw conclusions as to the level or eharacteristics of mental functioning in the adult.
The wide range of test inzelligence found among individuals in one type of occupation was evident in the Army data. Fryer's study of this material summarized the findings for ninety-six occupations, grving interquartile score ranges as well as median Army Alpha scores for exch. ${ }^{34}$ A similarly wide range has been found in a recent investigation by Cattell, in which he attempted to standaxdize an intelligence test for adults. ${ }^{55}$ He listed wwentyfive occupations from which he had examined 12 or more members; in spite of the fact that the numbers in some of these groups were small and that his test ${ }^{39}$ differed somerwhat in nature from the $\mathrm{Alph}_{\underline{q}}$, there is a fairly close correspondence between his listing of occupations in order of intellectual levcl and Fryer's listing.

5. SEX DIFFERENCES IN INTELLIGENCE TEST PERFORMANCES

From the time of Thompson's ${ }^{57}$ pioneer work until recent years, almost all studies of sex differences in intelligence had been based on the findings for children. Garrett summarized these as follows ${ }^{33}$

Most investigators have found the average boy to be superior to the average girl in tests involving numerical or mathemaucal relationships, as well as in the ability to employ spatial and geometric concepts. Gurls, in turn, are usually su-

[^8]perior to boys in tests requiring memory and in the ability to employ language relationships quickly and precisely . . . the consistency of the tesults reported by different invesigators lends weight to the belief in the existence of a true difference.

In a study of over 2,000 school children Pressey found that the girls' lead in verbal material was gradually lost with age, hut che boys were superior in arithmetic at all ages.s' A number of other studies have shown, however, that the girls' superiority in verbal material persists at the college level.

The rnost conclusive recent evidence is that from the results of the Scholastic Aptitude Test. Each year since the mathematical section was added, the girls have been superior in mean scores on the verbal and the boys on the mathematical prortion of the test. ${ }^{20}$ In mast years the population was ahout 8,500 and the differences in means were clearly significant. It is to be noted that Brolyer considers the group of girls more highly selected than the group of hoys, a condition which would tend to produce a difference smaller than the true one in mathematical material and larger in verbal.
Evidence of reliahle differences is not so clear among adults. In his study of family resemblances, Carter found that ser differences in adult scores were slight in comparison with individual differences ${ }^{41}$ It is to be noted, however, that the difference divided hy the sigma of the dufference for the computation tests, on which the men surpassed the women, was 7.5 , while this ratio for the vocabulary test, on which the women were superior, was 100.

Conrad and Jones, whose important study of adult intelligence has atready been nentioned, found slight superiority on the part of the females; it was greater during a dolescence chan in later years but in their opinion not sufficent to be of any practical importanoes: The males were rather consistently inferior on those four tests of the Army Alpha whick the authors thought roost "strongly verbal" (common sense, opposites, disarranged sentences, and analogies). The differences on the other tests are reported in the following starements: ${ }^{3}$

[^9]In test I (oral directions) the males are in early adolescence as inferior as in the more highly verbal tests; but ar later ages they acquit themselves relatively much better, overtaking the females in the period of middle maturity, and again dropping slighty behind in later maturity. Test 8 (information) is one which has commonly been regarded as fayoriag males. . . . Our obtained sex differenees are relatively slight in this aest, and with frequent intersections of the growth curves. In test 6 (number series completions) a similar condition occurs, .: [$\ln 2]$ (arithmetie problems) we find the only instance in which males are fairly consistently superior to females. The male superiority does not dearly emerge until later adolescence. . . .
Stmall differences, varying in direction according to the nature of the material and dissimilarities in interest and practice, were also found for the moving pieture test which Canrad and Jones reported. ${ }^{4}$
Milcs and Miles discovered irregular trends in the average scores for men and wornen of sucecssive decade groups on a fiften-minute form of the Otis Sclf.Administering Tests of Intelligence, but they were inclined to regard the differences as "possibly due to errors in sampling." "s The men were superior in most of the age groups. When comparisons were made between five largerange age groups, the men were superior in four instances and in two of these the differesces were great (with a difference divided by the sigma of the difference of 3.58 for ages fifteen to twenty-nine and 2.6 f for ages fifty to sixty-nine). It is to be noted that these comparisons are based on an omnibus test, and differences between the sexes in particular types of performance, such as Jones and Conrad found, may thus have been hidden. Other parts of the Stanford Maturity Study, that is, investigations of other activities besides those involved in the Otis Test, have shown Eew significant or large sex defferences, however; and most of these investigations are of specific types of actwity in which differesses between groups should have been detected if they had existed. ${ }^{48}$

6. THE GROWTH AND decline of inteligernce

The attention of psychologists, particularly of those concerned with the construction or interpretation of mental tests, has loag been focused on the problem of the growth of intelligence. ${ }^{17}$ It has been attacked by comparing

[^10]the test performances of different groups of children at successive ages, and by reresting the same groups of children at an interval of one or more years. There has been careful work on sex differences in mental development, on the relations between physical and mental growth, and on many other aspects of the problem. The question of the limit of mental growth has of course been a part of the developmental studies of children, but until recently no studies were continued through suecessive ages beyond adolescence. Consequently, it was never possible to determine the actual course of any test performance with age. The only data available were the Army findings, with different age groups which were probably not comparable, and a small number of studies of special groups of adults-firemen, polieemen, prisoners, professors, and various other types of employed and unemployed. ${ }^{63}$ None of these data demonstrated the peak of development or the rate or characteritsics of the decline beyond maturity. ${ }^{19}$ The first important work on these problems began it the hate 1920's with Thorndike's experiments on adult learning, Willoughby's study of family resemblancer, and Jones and Conrad's investigation of the relation between age and test performance in a large group of adults. The results of this work must be reviewed in some detail, as well as the findings of Miles' Stanford Maturity Study.

[^11]Before discussing the data on mental growth or decline, however, it is first of all necessary to note that any findings must be interpreted in the light of the type and difficuly of the material the test presents and of the sealing method emplayed. The results should be deternined separately for different types of test, and the test should always be suited to the mental maturity of the subject. The scaling method must, of course, be independent of assumptions as to the nature of mental growth.
The mental-age method of sealing, with the linear relationship between mental and chronological age, is therefore unavailing in the study of mental growh. The early investigators, when they did not report results in terms of mental age, reported raw scores. Thurstone and Ackerson, ${ }^{50}$ in connection with a report of Binet Tests scaled by Thurstone's method of absolute sealing ${ }^{51}$ note that the raw score is also an unsatisfactory unit of measurement for it is probably not the same in dafferent parts of the scale. The ssudies based on a method of absolute seahng are few, however, and uf comparatively recent date.

One of the most widely quoted early studies is Teagarden's.5.5 She tested 408 children over twelve and a half years of age at Mooscheat, a home mantained by the Loyal Order of Moose for orphans of its deceased members. She consid. ered the group low average in relation to the population at large, but relatively unselected up to eighteen years. Of the results reported, those for the Stanford Binet Seale are unsatisfactory because of the mental-age sealing, but those for the Atmy Alpha furnish interesting material for furthes analysis. Teagarden used raw and T-scores fot each half-year group, preferring the T-scores although the results for the raw and T-scores did not differ markedly. Sigmas were also given for the raw scores, however, so ilat thesc are more satisfactory for analysis.
Teagarden used the aterageofthree method of smoothing her curves and thus diminated the istegularity of the progression from one half-year group to the other which is evident when the senes of medians is surveged. ${ }^{50}$ None of the differences between medzans is statistically significant. By taking twelva instead of six months as the unit, so as to mectease the number of cases in each group, the irregulanties may be eltminated and the general trend brought out more

[^12]the test performances of different groups of children at successive ages, and by retesting the same groups of children atan interval of one or more years. There has been careful work on sex diferences in mental development, on the relations between physical and mental growth, and on many other aspects of the problem. The question of the limit of mental growth has of course been a part of the developmental studies of children, but until reeently no studies were continued through suecessive ages beyond adolessence. Consequently, it was never possible to determine the actual course of any test performanee with age. The only data available were the Army findings, with different age groups which were probably not eomparable, and a small number of studies of special groups of adults-firemen, polieemen, prisoners, professors, and various other types of employed and unemployed. ${ }^{45}$ None of these data demonstrated the peak of development or the zate or characteristies of the decline beyond maturity. ${ }^{43}$ The first important work on these problems began in the late rga's with Thorndike's experiments on adult learning. Willoughby's study of family resemblances, and Jones and Conrad's investigation of the relation between age and test performanec in a large group of adults. The results of this work must be reviewed in some detail, as well as the findings of Miles' Stanford Maturity Study.

[^13]Before discussing the data on mental growth or decline, however, it is first of all necessary to note that any findings must be interpreted in the light of the type and difficulty of the material the test presents and of the scaling method employed. The results should be determined separately for different types of test, and the test should always be suited to the mental maturity of the subject. The sealing method must, of course, be independent of assumptions as to the nature of mental growth.
The mental-age method of scaling, with the linear relationship between mental and chronologieal age, is therefore unavailing in the study of mental growth. The early investigators, when they did not report results in terms of mental age, reported raw scores. Thurstone and Ackerson, ${ }^{\text {so }}$ in connection with a report of Dinet Tests scaled by Thurstone's method of absolute scaling ${ }^{\text {st }}$ note that the raw score is also an unsatisfactory unit of measurement for it is probably not the same in different parts of the scale. The studies based on a method of absolute scaling are few, however, and of comparatively recent date.

One of the most widely quoted early studies is Teagarden's. n 52 She tested 408 children over twelie and a half yeats of age at Mooseheart, a home maintaned by the Loyal Order of Moose for orphans of its deceased members. She eonsidered the group low-average in relation to the population at large, but relatively unselected up to eighteen years. Of the results reported, those for the Stanford Binet Scale are unsatisfactory beciuse of the mental-age sealing, but those for the Army Alpha furnish interesting material for further analysis. Teagarden used raw and T-scores for each halfyear group, preferring the T -scores although the results for the raw and T-seores did not differ markedly Sigmas were also given for the raw scores, however, so that these are more satisfactory for analysis.
Teagarden used the average-ofthree method of smoothing her curves and thus eliminated the irregularity of the progresson from one half-year group to the other which is evident when the series of medrans is surveyed. ${ }^{33}$ None of the diferences between medans is statistraally signuficant. By taking twelve instead of six months as the unit, so as to uncrease the number of cases in each group, the irregulazities may be elimmated and the gencral trend brought out more

[^14]clearly. ${ }^{64}$ The new figures are shown in Table 1 . The relinbility of the differences between the medians (here treated as means) for sueceeding years is also given.

The difference between the mediuns which most nearly approaches statistieal seliability is the rise between the groups with midpoints at fifteen and sixteen years. These is a slight rise in median score between sixteen and seventeen, but none at all between seventeen and eighteen. ${ }^{53}$ These figures would indieate an

TABLE I

THE RELLABHLTTY OF DIFFERENCES IN MEDLAN ARMT ALPILA SCORES EETWFEN SUCCESSTVE ONE-YEAR CROUPS (TEAGARDEN)

A0x	N	MEDIAV	SICMt	$\stackrel{D}{C D}$	CIANCES IN 100 OFA sicntricant DIFFERESCR
12-6 to 535	87	6	$3^{8.90}$		
				0.27	3
13-6 to $44-5$	93	69	32.18	1.60	94
14-6to 15-5	76	78	3962	2.80	99.7
15-6 to 16-5	60	97	39.18	1.08	86
16-6 to 1フ-5	4^{3}	106	42.61	-	\bigcirc
17-6 t018-5	31	106	44.93		

carlier eessation of growth than 'Teagarden reported, a cessation berween sixteen and seventeen rather than between seventeen and eighteen. They would also indicate a positively aecelerated curve between thirteen and sixteen, whereas Teagarden concluded that this curve was negatively accelerated. It is hard to say how much of the negative acceleration she found depended on the average-of-three method of smoothing the curve.

The analysis Thurstone and Ackerson made of the results of Binet Tests scaled by the method of absolute scaling showed a positively accelerated curve up to the age of about eleven years with negative acceleration there-

[^15]after. ${ }^{\text {t3 }}$ The population they studied was slightly retarded, and more variable chan the average; the suljeces were 4,208 white children, chree to seventeen years of age, entering the Institute for Juvenile Research. The growth curve obtained was asymptotic to absolute zero and asymptotic to the level of test maturity. The authors noted that they had of course no rational procedure for locating the level of maturity according to the Binet Test as for locating the absolute zero. They found that the brighter children reached the inflection point of about eleven years sooner than the dull, and that they reached test maturity sooner than the dull. The authors stated that: "The absolute variability of test intelligence increases with age until adult intelligence is attained."

Richardson and Stokes, on the basis of results obtained for the Simplex Junior Intelligence Seale given to $2 z, 000$ children of ages six to fourteen, the total population between these ages in one town in England, supported Thurstone's eonelusions as to variability. ${ }^{5 t}$ They found that the absolute variability of intelligence increased with age, and that the spread of inteljigence at any age was proportional to its mean level at that age. Consideration of the growth curve indicated that the sigma divided by the mean was a conscant equal to about .i8. The mean growth eurve obtained was an almost perfect G eurve, with the inflection point at about four years. ${ }^{\text {ss }}$ Richardson noted that "from 6 years onward we are dealing with the upper half of the developmental curve wbich has reached by 11 years a level of over 80% of maturity. Hence the differences we are aecustomed to measure with our tests, between one year and another, and one individual and another, will often be quite small when veewed against the background of the absolute scale." He speculated as to the probabie form of the growth curve below and above the ages examined, and suggested with regard to the upper end that development probably reached 96 per cent by eughteen years and 99 per cent by twenty-four.
Another study by means of the method of absolute scaling has been carried out by Odum. ${ }^{53} \mathrm{His}$ data were also very extensive and based on the re-

[^16]sults of group tests. His population ranged in age from five to nineteen years. Odum found that the growth curve showed negative acceleration, and that the variability in the case of cach test inereased as chronologieal age increased. He concluded that the ability of ehildren to score on group intelligenee tests did not "stop growing before the age of 17 , and very likely not unil a later age."

The crucial ages from fourteen to eighteen have been the subject of special study as a part of Thorndike's work on mental growth. In 1922 and 1923 he gathered material on retests of 8,000 high sehool students, grades nine to eleven and ages fourteen to eighteen, and, after allowing for the effeet of practice, found evidence of a steady increase in score from age to age. He concluded that any decrease in gain with age was offset by increasing selection of the group. ${ }^{* 0}$ To study the influente of age feed from the influence of selection, he later compared the gains made in a year by a large number of thirteen-year-olds from the ninth grade and fourteen yearolds from the tenth, the basie assumption being that about the same amount of ability was required to be in the tenth grade at fourteen as to be in the ninth at thirteen, ${ }^{\text {en }}$ The results showed a slightly larger gain in the thirteen-year group.

Thorndike is one of those who have most emphatieally contended that mental growth as indicated by test performanees continues beyond adolescence, In The Measurement of Intelligence, he stated: ${ }^{\text {² }}$

Neither in our CAVD results, nor in the National-Otis-Haggerty estimate, nor in Brooks' results is there any justification for the doctrine that the gain in altitude of intellect of the sort measured by existing ine elligence tests is zero after 14 , or after 15, or even after 16 . It decreases, but it should not become inappreciable until 18 or hater. According to our results the decrease from 14 to 18 is not an

Scale: and the National Intelligence Test, Scaie A. The mumbers taking cach of these tests ranged from 2,000 to 40,000 .
es E. I. Thoradike, On she Improvemens in Intellagence Scorcs from Fourseen to Eightecn, J. Educ. Psychol., $1923.14,513$-516.
th Thoradike. On the Improviment in Snedigence Scover from Thirteen to Nineteen. J. Educ. Psychol, 1926, 17, 73 \rightarrow 7.

22 Thoradike, The Measurement of Inselligence, 467.
It is to be noted that Thorndike suggessed that thene wras a "dufferential gain frora the age of fourteen to swenty and beyond, whereby some individuals inereased these abilitics very greatly, whereas others increased them litule or not 2 all ." On this basis he would account for the change from symmetry and nomality characteriving the distributions of test intelligence for children to the positive skewness shown in the distribution of the sort of inteliect measured by Alpha for the adulr populatron. (Page 293.) See page 8.
abrupe slowing up of a gain that has been steady hitherto, but is part of a general negative acceleration which began long before the age of $61 / 2$,
The type of curve Thorndike described continued to rise longer than that found by Thurstone, a difference which may well depend on the difference in discriminative power between the Binet and the CAVD tests for the older subjects. At the younger ages Therndike's curve is not unlike that obtained by Richardson and Stokes: both showed positive acceleration in the very early years, followed by negative acceleration. Thurstone would place the inflection point later, about deven years. Odum found no infleetion point between five and ninetcen and described a negative aeceleration throughout this age period.
Thorndike's studies of learning also indicatel a limit of growth which fell eonsiderably beyond early adolescence. He set the age somewhere near iwenzy: As to the eharacteristics of learaing in the years beyond twenty, he concluded: ${ }^{\text {as }}$

The general rendency from all our experimenss is for an inferiority of about 13 per cent as a result of the 20 years from wentytho on. Learning representing an approximation to shecr modifibility umaided by past learning shows eonsiderably more inferiority than this. Actual learning of such things as adults commonly have to learn shows considerably less. . . .
Adults may be expected to leatn harder things than they eould have done in the years from six to sixteen and to learn the same things in ways requiring greater powers of abstraction and reasoning.
One of the first studies of adult intelligence after the Army survey was the investigation Willoughby made in 1927, whech had as its immediate purpose an analysis of family resemblanees. ${ }^{\text {as }}$ The families selected for examination were those having children aged thirteen in the schools around Stanford University. The terntory is probably a superior one, and a further factor in the selection of the group is that almost 50 per eent of the families refised to cooperate; these may have included a larger proportion of dull subjects. While the test levels probably should not be taken as representative of the population at large, the findangs oo the course of various test performances with age are of great importance. The peaks of abblity on the dif ferent tests sanged from seventeen to twenty-seven years:

[^17]Type of test
Vocabulary
Science-nature information
History-literature information
Number series completion
Form combination
Digit-symbol substitution
Arithmetic reasoning
Opposites
Symbol series completion
Verbal analogies
Comparison

Source of ters
Prak of a kinisy
Stanford Achienement 25
Staoford Achievement 25
Stanford Achierement
22
Army Alpha and Beta 18
Army Alpha and Beta I9
Army Alpba and Deta I8
National Intelligence $20+$
National Intelligence, with the addition of harder iterns
National Intelligence, with the addition of harder jtems 17

$$
\begin{aligned}
& \text { National Intelligeoce, with the } \\
& \text { addition of harder items }
\end{aligned}
$$

Natiooal Intelligence, with the omission of pictorial elements

It is cvident that the tests showing the earliest peaks were the number and non-verbal tests and also the analogies, while those showing the latest peaks were tests of vocabulary and information.

The tests were differentiated not only with regard to peak of development, but also with regard to two other characteristics of the growth curves: the extent of seneseent decline and the sharpness or roundness of the peaks. ${ }^{\text {6e }}$ A decline which carried the eurve back to pubertal or prepubertal levels appeared in the case of the opposites, the number and the symbol-series completion, the analogies, the symbol-digit substitution, the history-literature information, and the comparison. There was less decline for the vocabulary, the formeombination, aod the science-nature informatioo tests, and least of all for the aridmetie reasooing. The two tests showing the sbarpest peaks were number-series completion and analogies, while that sbowing the roundest was arithmetic reasoning. Io this connection Willoughby suggested that the sharp peaks were probably to be found for test abilitics "acquired more or less as a matter of normal growth and comparatively iodependent of school trainiog, while a long, rounded peak would seem to be the result of Iaborious aod longeontinued effort against obstacles."
The next important study of adult intelligence after Willoughby's was that made by Jones and Conrad in New England. ${ }^{67}$ It has already been de-

[^18]scribed as unique among studics of adults because it represents a survey of a complete or almost complece community. Possible adult resistance to mental testing was overeome by propaganda and the offer of a free movic. Cases obtained in this way were supplemented by house-to-house testing. It is possible that there was some selection in the age groups over forty, for there was an increasing number of refusals beyond this age, but on the whole the population is one of the most satisfactory ever obtained, and one of the few providing trustworthy indices of the typical adult test performances at different ages. ${ }^{59}$ The only tests given, however, were a test on the movie and the Army Alpha, and consequently the extent of the data on aduht test performances is rather limited.
The general characteristics of the growth curve on the total Army Alpha for the x , xgr subjects, aged ten to sixty, were found to be "linear growth to about 16 years, with a negative acceleration beyond 16 to a peak between the ages of 18 and 21 ."cs Following this pala there was 2 decline "which is much more gradual than the curve of growth, but which by the age of 55 involves a recession to the 3 yyear level.," ${ }^{30}$ The diference between test lev-

* The figures are, of course, representative only for a grographicsl area cimilar to the one surveyed, where about g_{7} per ceat of the population came from old New England stock.

The oseupational distribution was sumalar to that of the Vermont Census for 1920 ; the agricultural groups, however, were mone beavily weighted ia fones' nagile
${ }^{63}$ Jones and Conrad asted chat thas growih curve was sumbat to that reported by Teagarden and disenssed above. They found close sgrtement in the actual senes upy to nutern, and suspected that Teagarden's groups were cefected bejond this age (O_{P} cis, 339, 3:r)

T0 124d , 239.
Hsiao reforted the sam- dati in an MA. theas at Coitumbia in 1927. Preformance of frmy Aipha as a Funtron of Age. There are some discrepancacs betueen has dira and those given by Jones and Conrad The number of cases was the same tor the two srudies is oniy twe age greups, the medtans the same in only three. Thete are differences in the growth curves whach depead on the fiec that Haso gave equal distances on the bave line to each atep ta his tutnibu. tion, while Jones and Conred allosted for che unequal steps Furthermore, Eisizo smoothed his eunes by the average-of thre method. wheress Jones and Connad took as onghal data the aserare of the mean and the median and then smoothed the curves by cye

Hsizo reported the relabinty of the differentes tetu een total Atpha scores in successte age groups. The differences between the successice gear groups from eleven bo sixteen ate neariy relable in four instances and relisble in one, that between thorteen and fourtren. In the adult Feriod, none of the dafferenees as minale, but the declane tor the group at forty five to fortynine as compared with that at forty to forty four it almost retable There are rises, afthough neither is reliable, in the scmidecade tharth five to thuty-nine and again in the serardecade forty to forty-four. In all the enb-reati excrpt Tent 7 the mribans for the age range forty to foete. fout are bighet than those for the age rance tharty-five vo thirty-mine.

The gise th the period forty on forty four slon arpeared in \$fursellis examinatans of pats-

 the study by fones and Conras the ne was followid by a wimp drop after fory five yean.
els in the different age groups led Jones and Conrad to make the following significant statement:

A distinction . . . needs ta be made between peak of development, and the "mental age of adulcs." The later phrase is as a matter of fact no more justifiable than would be the expression the "mental age of children." In both cases (with possibly rare exceptions) the mental age changes significanly with the progress of the years: among the children there is growth; a mong the adults decline. ${ }^{71}$

Consequently they gave no median mental age for the adult group as a whole. ${ }^{72}$ The T-scores were, however, based on the variability within an age range of fifteen years, namely twenty-five to thirty-nine, and thus significant growth or decline within this period were in effect excluded.
The growth curves for the separate sub-tests of the Army Alpha showed considerable diversity. The most rapid declines appeared for Tests 7 (Analogies), 3 (Common Sense), and 6 (Number Completions). Jones and Conrad suggested that these should probably be considered the best tests of the Army Alpha as measures of basic intelligence, that is, the tests most free from the effect of environmental variables. On this point they found themselves in aecord with Thorndike's conclusion that "age exerts its most adverse influence upon native capacity or 'sheer modifiability.'" Test I (Oral Directions) showed a sudden, sharp drop from the carly peak, but thereafter reached a level which was well maintained till sixty. Tests 2 (Arithmetie Problems) and 5 (Dissected Sententes) showed a gradual but not matked deeline with age. The two tests manifesting little or no decline wih age were 4 (Opposites) and 8 (General Information). The authors

It Jones and Conrad discused at seme length the addrional Getors which might inference the dediting curves. (Op. Ct, 254-257.) They considered the possibilhty of slighter motivation on the part of the older subjects, poor eycsight oc hearing. the remoteness of school training, and disuse of functions, an inabsityy to work rapidily, and a diffculty in understanding questions. Comparisons of the cases rested in the metung halls and the cases rested at bome, togetirer with camparitons of the findungs on different types of tests, some of them less infuenced than others by school training. speed, etc, seemed, however. to demonstrate that the dectines depended toot on any of tbe abowe-mentioned tareors, but on increasing age.
${ }^{72}$ Whils the median score on Army Alpha for the total native-whate draft was 59. the medan for the goz cases from Vermoort zaking Alpha only was 67 , for the 7 ro cases from New Hampshire 6x, and for the $\mathrm{x}, \mathrm{x} 34$ from Massachuserts 72. (Mem, Nat. Acal. Sci, $192 \mathrm{f}, \mathrm{I5}$. $682-683$.) It is natural. therefore, that Jones' medzans should be slightly bigher than the total medan, but it is surprising that they should be so murh hightr: for his groups over thirteen years ofd the medians ranged from 71 for the age period fify to fifty four to 93 for the age period ninetcra to twenty-one. The sample is such a complete one that the higher medans must indicate cither a commuriey group which is actralty superior to the population at large or better testing condrions or boti.
suggested that these tests, because of increasing experience, should really show increased scores with age; in other words, that the sustained rise was not of the same significance as a sustained rise in tests of more clearly "basic intelligence" would be. ${ }^{73}$
A comparison of the curves obtained by Willoughby and by Jones and Comrad for tests similar in type of performance required shows certain differences in peak of development and rate of decline but no marked disparities. In the study made by Jones and Conrad there is a sharper decline for analogies and considerably less decline for opposites. In both, numberseries completions manifest a definite drop while arithmetic reasoning and information are relatively well maintained.
A summary of the data with regard to the peak of development, or the ages at which mean scores are highest, is presented in Table II. Whenever possible tests were grouped as verbal or non-verbal, and when no such distinction was possible the test was classified as "doubtful." ${ }^{14} \mathrm{On}_{\mathrm{n}}$ the basis of

Pr Jones and Conrad stated that both of these were unformation tests, which should probably not be inciuded in a butcery to be used for groups of dufferent ages. It seems probable that the diffeulty is one of interpretation, that both are useful tests providug sutisfactory norms are established for dufierent ige levels.

Wilsos resommended Test 8 (Information) as an adult test, (linformation as a Mearure of Inselligence and Maturity, J. Educ. Psychol, 1924, 15, 309-312) Conrad, using Hesto's data, also recommended it. (General-Informarion, Inrelligence, and the Dechne of Intelligence, J. Appl. Psychol., 1930, 14, 592-599) Conrad argued that it was a test acceptable to adulits, and sultable for them since their scores did not decline with age, and that it correlated fairly well with total A pha reotes. He pointed out, however, that an apparent increase in seores oa Test 8 may mean an actual decline, if the older patient shows jess inerement that his age atself should bring about. It is to be soted, howe ver, that Spearman found the information test unsuitable for intelingence teriog ($\mathbf{2}$ he Alhaties of Man, 270-277, 362), snd thas Wella deleted it in bus x vision of the Army A!pha.

As wo the continued wse of opposines tests in the stady of adult incellygence, there would probably be a greater number of ayes than nays. The cest has generally been fouad to cotrelate highly with nseasures of sor-alled general intellygence. The Army examineer found tie oppos sifes test of their firse scale the bers in the exammation "as a measure of the traiss which enter into a Stanford Binet mental age." (Nem Nat. Acad. Scr, 1921, 15. 332) A version of the opposites is ore of the three sub-tests remanning in the verbat secton of the Scholasuc Apotude Test.

The correlation between Test 4 and Test 8 is the hughest of the antercorrelations of the Alpha sub-teste for the Antiy data while Test 4 has the thgisste correlation witb Stanford Binet. Test 8 bas orly the fiffh haghest. The high correlitiont between them may possibly be a spurious one, resulting from their sumilar conreiaton with sge. The fact that diey have similar age eurves does not, of course, indicare that thry are tests of closcly riated performances.
r* Of the third group. the anthmetic reasoning test is clearly distunce EFom the yerbal, and yet can hardly be classified with the leass which are in the non-verbal group. In view of Kelley's analygis of the factors in the Army Alpha, the durections test does not seem to fit in
 cit., 316.)
the existing data it is difficult to judge to what extent the diferenses in the ages at which the peaks appear depend on inadequacies in certain of the tests, and to what extent they depend on actual differences in the maturation rate of different abifities.: The present resulss show that the peaks appear later for most of the verbal test abilities than for the predominantly non-verbal, and that the analogies test, as well as the arithmetic reasoning

TABLE II

ages ay whitit theitrst mean sookes are youtid th ptfferent TITES OF TISTS (whlovcith and jones and contad)

and possibly the directions and practical judgment, are to be classed with the non-verbal tests in regard to the early age at which the maximum mean score appears.

As to the data on variability Jones and Conrad reported that a differential growth rate in adolescence was clearly indieated by inerease in sigma not only for Alpha but for cvery sub-test. Except in Test 7 (Analogies), they found no cvidence for a differential duration of growth.

Although Thurstone and Ackerson specifically limited the application of their law of absolute variability, stating that absolute variability of test in-

[^19]telligencè inereased with age unuil adult intelligence was attained ${ }^{78}$ Jones and Conrad seemed to consider the extension of the law. They stated: ${ }^{77}$

It is interesting to note that fulfillment of 'Thurstone's law of absolute variability would require that the decline in intelligencetest scores be accompanied by corresponding dedint in absolute standard deviations-implying more rapid deeline of intelligence among the brighter than among the duller of the adults. Using raw Alpha scores, we have failed to obtain a general linear relationship between mean and standard deviation. Whether or not the same absence of a general relationship would be found with Alpha scores in "absolure" scaling remains to be determined.

Cerainly neither common sense nor the evidence from scientific studies would indicate that the senile decline began earlicr in the more intelligent.
The Stanford Maturity Seudy is, as already noted, somewhat less satisfactory than that of Jones and Conrad from the point of view of the sampling of the population. Subjects were secured through church groups, philanthropie societies, elubs, and lodges, and their serviecs were remunerated by payment to the organization rather than to the individual. ${ }^{73}$ The method was ingenious in that it aroused group interest and brought in a much larger proportion of the total community than would have been secured if subjects had been solicted individually, It is probable, however, that the groups of aduls who have joined themselves to any organization, with the posssble exception of the church, represent selected samples. ${ }^{79}$
A much more ambitious program of testing was planned than that carried through by Jones and Conrad, for the purpose of the Maturity Study was to determine adult performances not only on intelligence tests, but also in perception, motility, memory, the understanding of spoken directions, and other fields. In the testing program of $293{ }^{\circ}$, Miles planned as comprehensive a test battery as could be administered in a two-hour period. He found that under proper conditions all subjects could be induced to give

> 70 Op.cti, 533.
> 4T Op crt. 269
> 2 Muts, of तt . 107

7 Evidenes that the percentegts of aduls belongag ta clubs or other orgacizations differ markedly according to secial and fasancat states has recendy zppeared in the report of the White House Conference on Child Health and Pretecton, section III A In the questonazure study of personality develogiment mabour 13,000 pablic schoal chuldren of the eghth, nuth, and tenth grades, it was Found chat 53 per cent of the poor mathers belonged to no esganian-tion-church, social, or educational This surprisngly hagh procencage fell in the care of ehe lower-tididde-class mothers to 31 , in the case of the upper-ninddie-ciass mothers to 12 ; and in the case of the wealthy onfy 7 per cent belonged to no orgarization. (Thif Adolescent in the Family. New York D Appleton-Century, 1934 Table 47. page 359) Corresponding data were appareaty collected for fathers but were not giten in the report.
this amount of time to the soork; he noted, however, a danget of "waning interest" even within these two hours, and stated further that not all adults who serve onee will serve twiee and fewer still a third or fourth time.*0 The returning groups must therefore have been increasingly seleted if new subjects were not added. Many new subjects were taken on in the testing program of 1932 , and the investigation $2 \ddagger$ a whole is based upon 2 number of different groups of subjects, constituting allogether the taost extensive survey of adult performance ever obtained, with the exception of the Army survey. The work has so many ramifications that a eomplete estimate is not yer possible.
The parts which ate of greatest interest in connection with the present study of adults are the results, first, of the intelligence test given to the main group of 823 subjects, aged seven to ninety-four, and, second, of certain of the particular studies, notably those of the simpler perceptual and motor abilities the understanding of spoken language, and the adaptability to test situations.
The intelligence test employed was very brief, a form of the Otis SelfAdministering Test of Intelligenee, Higher Examination, Form A, given as a fifteen-minute test. ${ }^{81}$ In justification of such a short test Miles and Miles reported that it showed a corrclation of $+56=0.02$ with the thirty. minute form in the limited range of superior ability represented by rer unj. versiry studens, and gave other similar data. It cannot be denied, however, that a fiften, or even a thirty-minute test gives a seanty indiation of the so-cllited general intelligence, and such tests of course show little as to the relationship between different oppes of performance or their eourse with agc.
In order to make some comparison with the Army results, the scores on the fifteen-minute Otis Test were transmuted into equivalent seores on a twenty-minute abbreviated form earlier used by Miles and Mifes; these were then transmuted into equivalents for the original Otis Test, and these finally transmuted into the equivalent Army Alpha scores given by Otis. Whatever the effect of so many transmutations, the results showed clearly that the Army Alpha equivalents for the median Otis scores for Miles' group were much higher than the Army median of 59 for the native-white draft. ${ }^{82}$ In short, the judgrment as to the Ievel of intelligence of the sample

[^20]which would be indieated by the nature of the seiection seems to be confirmed by these test findings.

TABLE II

SCORES by decapes for 6 i6 adults, ctiy b (thaie vi, miles and miless, abbrevinted)

$\begin{aligned} & \text { AGE } \\ & \text { pertion } \end{aligned}$	N	MEAN SCOREDN Abrreviated CTIS TEST	slema	$\frac{\mathrm{D}}{\sigma_{\mathrm{D}}}$	scorx on absic alpen
15-19	51	38.5	8.0		126
				-.11	
20-29	80	$3^{8.7}$	7.9		126
				2.53	
30-39	87	35.1	96		108
				-17	
40-49	90	34.2	9.2		108
				3.27	
50-59	119	299	9.7		88
				2.86	
60-69	103	26.1	20.6		72
				2.05	
70-79	68	23.1	8.7		61
				3.54	
80-89	18	14.7	9.3		26

On the question of the growth and decline of intelligence, as indicated by test scores on this fifreen-minute test, Miles and Miles stated.:8s

From a maximum score at the age of 18 yr . the curve of intelligence main. tains almost a plateau through the "twenties," begins then to fall, and persists in its dowaward course, at first slowly, then more rapidly until the end of the life span.

An abbreviated form of one of their tables is reproduced in Table III to show the changes in test score from decade to decade, and the reliability of the differences. ${ }^{84}$

[^21]The mean seores for the age periods fifiten to nineteen and twenty to twenty nine are almost identical; the decline then begins; it secms to be arrested in the forties but is marked in exch successive decade thereafter. The arrest in the forties is interesting in connection with the fact that Jones and Conrad found a slight rise in the age period forty to forty:five. ${ }^{85}$ No such rise appeared in Willoughby's results. An interpretation of the finding is difficult for in neither case docs it seem to depend on fluctuations of sampling.
In summarizing the results of the Stanford investigation in his presidential address at lthace in 1932, Miles reported as follows on the relation of age and intelligence test performance for a larger group than that diseussed abave: ${ }^{30}$

The age-score curve from performanci on a standerd intelligenee test of a500 adults, (approximately aso over 70) ears of age) weighed to represent the level of the general population, shows a top mean of 15 to 15 yer mentul age at lifeage 18, persistence at pracrically this sume meatel let dhrough two deades, then gradual dedine to old agt, registered in the Pearson eorrelation coefficient -. 50 for a 5 c -score in the period of aduthood. Stated in another way, the test ability gain of the last three gesrs in the period of mental age growth is gradually lost in the next three-seore jears.
Miles then stated that sesults for qoo subjects with the speed factor eliminated showed that speed did not slacken before mental powet. In a later paper, however, C. C.Miles reported that comparisons of the fifteen-minute Otis speeded and unspeeded indicated that in early and middle maturity speed declined faster than power, whereas in late maturity the dedioe of power was relatively more apparent. ${ }^{\text {ET }}$
Despite the brevity of the Otis Test and the comparatively small number of items, these were analyzed with a view to determining their course with age. On this question W. R. Miles reported as follows: ${ }^{\text {ss }}$

[^22]. . verbal associations, generalizations, interpretarions of meaning, and recog. nition of relations show marked resistance to the influence of age. Speed, organization and recall of unfamiliar material, and defficut logical procedures involving a relatively wide immediate memory span show speedier decline. Perhaps I should call the decline registered in our curve not one in intelligence as such but rather a diminution in reaction speed and sum of energy available for new work types. This would mean that the decline correlates with physiological rather than psychological deterioration.

It secms unlikely that the question of the relation of age and particular intelligence test performances can be pursued very far on the basis of the items in the brief Otis omnibus test. Willoughby's investigation and that of Jones and Conrad have more to contribute on this subjeet. As alveady noted, however, the Stanford Study included many other tests besides the "general intelligence" test, and the results of these present important data on a number of traits or types of performance, many of which do not enter into the usual form of intelligence test and have rarely been studied at the adult level.

Tests of visual perceprion, reaction speed, motility, and complex motor skills all gave similar age eurves, characterized by hughest performances in the late teens or early adult years, followed by slow decline to about sixty and more rapid decline thereafter. ${ }^{33}$ The curves for memory and learning ability dropped more rapidly than those for the pereeptual and motor activities. The grasping of spoken durections showed a decline arnounting to approximately a third of the standard deviation per decade, and a correlation with age (-.5 I) abour that of the abbreviated Otis Test. ${ }^{\text {Do }}$ A series of non-language tests constructed or selected to indicate "adaptability" to new situations, and cotrelating from +.30 to +.51 wath intelligence, yielded corselations with age ranging from - 03 to $-.5^{6.91}$ In Marsh's report on these tests, he concluded that human adaptability showed only a slight tendency to decrease with age. The point is an extremely important one, for if adaptability to new situations falls off rapidly with age, this condition may explain the declines on many tests, for example, the code test used by Miles in studying memory. Finally, certain of the performances or traits studied showed hutle or no change with age. Aside from the verbaluzations,

[^23]generalizations, and so forth as indicated by the Otis items, these included imagination, ${ }^{02}$ persistence in work, and the four traits studied by the Bernreuter test-neurotic and introvert tendencies, selfsufficiency, and dominance. ${ }^{03}$

The demonstration that different test performances reach their maximum development at different ages and show different courses with age through maturity is one of the most interesting discoveries of the recent work. It is a problem which challenges future work as well, because the facts are a necessary basis not only for an understanding of mental functioning in the adult years, but also for the solution of practical questions as to the type of work the older person can best handle and the dificulties he is likely to meet. In this connection, however, there are two important findings which must not be overlooked. One is that even those performunces which decline rapidly after maturity in comparison to other test performances, actually decline slowly in comparison to the rate of development. As general observations would of course suggest, the changes during the adult years, at least up to the age of sixty, are slight in relation to the changes during childhood. A second important finding, which Miles and other investigators have stressed, is that individual variations are large. A gradually deelining eurve from the twenties or therenbouts is apparently the true condition, but it must be noted that many individuals in the bater deeades surpass the average scores for the twenties or thirties on a long series of performances.
A satisfactory ataek on the problems involved calls for the study of different types of activity, wch of which must be tested separately and at sufficient length to afford a reliable estimate. Few investigations have as yet met these conditions adequately, but they are basie for much of the important work which remains to be done, including the study of the relitionship of mental abilities at the adult level. There are still a number of activities which are probably significant in the adult period but have not yet been investigated; and it is evident that the satisfactory determination of tests for adults, the nature of which will differ according to the purpose of the work, awaits the study of these activities.

[^24]
II

THE SELECTION AND COMPOSITION OF THE GROUP STUDIED

1. Selection of the Group
a. Problems involved
b. Cxiteria for selection
c. Method of approach
2. Compasition of the Group
a. Distribution by diseases
b. Distribution by race
c. Distribution by age
d. Distribution by education
e. Distribution by occupation
3. Comprative Findings in Four Diagnostic Groups
4. Comment on the Sample

I. SELECTION OF THE GROLT

a. Problems involved

IN selecting normal adults to serve as a control group in the study of aphasia, the first requirement was to obtain subjects similar in age and in educational, occupational, and cultural status. Survey of the possible sources for such a group showed that the most nearly similar sample of the population, and therefore the best control, was to be found in the patients admitted to the same hospitals in which the aphasic pattents were studied but not suffering from any nervous disorder or any condition known to affect mental functioning. Permission was therefore secured to study patients in the wards of the hospitals in which the majority of the aphasic patients were being examined: the Orthopedic Hospital and Infirmary for Nervous Diseases, the Graduate Hospitat, and the Philadelphia General Hospital. Samples from the wards of these hospitals were satisfictory as controls because almost all the aphasic patients were also ward cascs.
The advantage of this method of selection is imrnediately obvious. The patients admitted to one department of a hospital are more likely to be similar to those admitted to another department in all factors except the
rype of disease which required their admission, than is any other limited group of the population which could be studied. ${ }^{1}$ The disadvantage, when the purpose is the study of mental functioning in normal adults, is also obvious, for a number of hospital patients certainly cannot be considered normal either mentally or physically. At the same cime there are many pitients whose hospitalization is enforced by the need for some particular treatment rather than by a serious protracted illness or general debilitation, and who, in the opinion of the authors, would be accepred by both medical men and psychologists as normal frorn the point of view of mental functioning. The problem in the selection of the normal conurol groups therefore resolved itself into the choice of those patients whose disorders were least likely to have any effect on the functions required in the various mensal and educational achievernent tests.
Neurological conditions were immediately excluded from the normal control group and in addition it seemed wise to reject all cases of glandular disorder, tuberculosis, or spphilis.: Aside from these, few types of disease had been studied with regard to possible mental changes and there was little matcrial a available to determine the choice of patients. ${ }^{3}$ Data from tests of intelligence in cases of children with diseased adenoids and tonsils were not of immediate value because patients coming in for treatment for these conditions had not been hospitalized long enough to be studied thoroughly. Many of the subjects finally aecepted had had tonsillectomies at some previous time; very few showed diseased tonsils or adenoids at the time of the examination.
In view of the fact that orthopedic cases were available for study and were particularly suitable because they were in good working condition
${ }^{1}$ For a discussun of the possbble shight differences in economic Laetors, we Weisenburg and McBride, Aphassa. A Chnical snd Psychological Study, 323.
${ }^{2}$ It is known that certain giandular conditoons are accompanied by definite mental changes, and various anvestigations, particularly in the German Interature, have indicated that there are charactenstue mental disturbances and deffets ia rpeech and wntung in tuberculosis. Far a recent paper, see J. Kollants, Ober Sfruch-wnd Schrebstörungen imalgememen and als "kletne Zerchen der Geviesschusichung" bei Tuberkulose und sm Alter. Arch. £. Pspchizt. u. Nerrealh, r933. 99, 109-196.

Syphilis is appareatly characterized by shighty inferior intelligence test performance, but this condition, as explanedi in the Army bifments, may as wril indicate that those of lower intellgence are more likely to expose thenosclves to infectian or to negleet prophylactic measures as that syphalis results in lower test performance. (Mem. Nat. Acad Sri, 1921. 13, 8ix.) In any case, the matter ts controversial, and syphalities could not safely be accepted for the so-called nomal group.
${ }^{3}$ For a zecent discussion of the problem, soc C. C. Scturesinger's excellent summary in Herertsyand Environment, 307-325.
and had unlimited time, the study of crippled children made by Fernald and Arlitt was of special interest ${ }^{5}$ These investigators found an average Stanford Binet 1.Q. of 82.35 for a group of 194 children, a figure which would seem to indicate somewhat inferior intelligence. Analysis showed that this mean I.Q. was lowered by the inclusion within the group of 27 cases of spastic birth paralysis (mean I.Q. 6g.II) and 15 cases of central nervous system involvement, including congenital lues (mean I.Q. 75.93). The groups of polionyelitis, tuberculosis, nutritional disorders including rickets, infections not involving the central nervous system, and trauma ranged from 83.79 to 86.53 in I.Q. These groups were still slighty inferior, hut apparently not because of the disease conditions, for similar ranges in I.Q. were characteristic of the siblings of the crippled children. In short, it seemed probable that the crippled children, who were all institutional cases, were drawn from inferior family groups in which I.Q.'s of about 85 would be typical.
Another study of interest in view of the large number of gastro-intestinal cases available for examination was Paulsen's report on mental and motor efficiency in cases of intestinal toxemia. ${ }^{5}$ The group under treatment for intestinal toxemia gained 56 per cent more than the control group on reexamimation by a battery of mental tests and tests of steadiness, motor control and coordination. The author concluded that this net gain represented the increase in mental and motor efficiency resulting from the treatment. This conclusion migbt well be questioned, bowever, in view of certain unsatisfactory conditions in the experiment. The rest group was selected on the basis of the presence of harnful bacteria in sufficient numbers in the feces, and the majority when questioned "confessed" the symptoms of intestinal toxemia. The control group was matched as nearly as possible in chronological age, test intelligence, training, and environment; but no attempt was made to determine the presence or absence of intestinal toxemia in these cases. A further, though probably less important, defect in the experimental conditions is a difference of rootive in the two groups: the test cases were promised assistance in bettering their intestinal conditions in return for work on the tests while the controls "entered the experiment as a matter of interest and desire to be of assistance to the examiner."

[^25]As these reports indieste, there was litule evidence at the beginning of this research as to the effer on intelligence of diseas, other than glandular disease or disorders of the central nervous system. During the course of the work, however, there appeared a very important study by Dawson and Conn, which is more extensive and more decisive than any previous investigation. ${ }^{n}$ An intelligence test, the Durt Revision of the Binct, was given to over a thousand children suffering from types of disease which included pneumonia, theumatism, nephritis, glandular disonders, epilepsy, encephalitis lethargiea, and other brain conditions. The findings show elearly that non-brain eases made scores on intelligence tests equivalent to those made ly the healhy population to which they belonged, while the brain cases were on the average inferior. In other words, discase, apart from distase of the brain ar ductess glands, "doee not appear to have any appreciable effect on the intelligence," An interesting analysis of mental test performonce in acute, non-atute, and thronie conditions revealed the fatt that the average seores were aeturlly higher for patients examined when fevered and aeutely ill; they were slightly lower for patients elassified as ehronic than for those in the afebrile but non chronie group, but the differenee was not significant.
The subjects selected for this research were studied during periods of less serious illness than those whom Dawson and Conn examined. With so litthe positive data on the problem, however, it was considered safest to restrict the cases to patients with bone fractures or dislocations and to patients recuperating from some surgical treatment and in good working eondition at the time of the examination.

b. Criteria for selection

For the reasons diseussed above, the normal adults were chosen from the orthopedie and surgical wards, with further limitations which would make them salisfactory $1 s$ controls for the aphasic group. These limitations were as follows: ${ }^{7}$

1. Freedom from any present or earlier neurological, mental, or glandular disease
2. Satisfactory vision and hearing
3. Age under sixty years
4. English as the natuve congue.
[^26]
c. Meshod of approach

When cases which seemed to fill the requirements had been selected from the hospital records, or the physician's seport, the examiner proceeded very informally to explain the problem and ask for the patient's cooperation. He was told that studies were being made of patients who had speech difficulties resulting from a "stroke" or injury to the brain, and that thesc studies were handicapped by laek of knowledge as to just how much the average man remembered of his schooling, or how much he had learned without schooling. It was further explained that we were as yet unable to do a great deal for the aphasie patient because we did not know how the ordinary man worked on rests of reading, writing, and arithmetic. Two points were always made as elear as possible: 1) that the "ordinary man" was the one we wanted to study, not the well-educated man; and 2) that while each person must do his best, it was not his individual score, but the general results for the group which interested us. Sometimes one of these points was more useful in elinching the bargain, sometimes the other; and occasionally our objectives were attained when our explanations did not seem to be eomprehended at all.
All investigators report a certain number of refusals; Miles and Miles speak of the "difficulty which we and others have encountered with adult subjects in administering intelligence tests." In this work, of the total number of patients asked to take the examinations, only $2 x$ per cent refused. ${ }^{8}$

The figures for the three hospitals are: Philadelphia General, 24 per cent $t_{;}$ Graduate, is per eent; and Orthopedic, 18 per cent.
The motives which Ied to acceptance in the remaining 79 per cent of the cases are of some interest. Three types were distinct, but all of these were probably present to same degree in most cases. The first was a willingness

[^27]to do anything which would help someonic else. The weond was boredom: the gatient welcomed any occupation to fill in time. The third was more personal, arising from a reluctance to say "no" to the cxaminer and pride at being selected. At the Philadelphia General and Orthopedic Hoppitals, where work was carried on over long periods of time, there was some good. natured banter about "eaking lessons," but this publicity was an advantage rather than a disadvontage; pasienes felt thos there was a certain amount of prestige attached to taking the eamination, and a number who had not been selected nffered themselves as subjects.

It will bove been evident that in approaching the patient, the emphasis was placed rather upon achievement in reading. writing, and arithmetie than upon intelligence. During the course of the examination, a few of the patients asked if some of the tesss were intelligence tests, but were not disturbed upon being told that they wete.
Whether the tests were designed for group or individual application they were all given as individual tests, a very important point since individual work enabied the examiner to become well sequainted with each patient, to observe his methods of work, and to ensure his steady cooperation. Oenssionally a patient was reluctant to try some particular test; if he objected seriously the test was omicted, but in most eases he could be persuaded to attempt the work, and onse persuaded, he seemed to take pride in doing his best. Cooperation was splendid, and the contact between patient aod examiner all that could be desired. The advanages which acerue from a favorable personal relation eannot be overemphasized.

2. COMPOSTHON OF THE CROUP"

a. Distribution by distases

The distribution of cases according to the pathological eondition necessitating admission to the hospital is presented in the following outline: ${ }^{10}$

[^28]DISTRIBUTION BY DISEASES 39
diseases of the musculo-skeletal systeat 37
Of the bones
Due to infection: chronie ostemmyelitis of right or feft fermur 2
chronic periostitis of right femur I
tuberculosis of vertebra 1
Due to trauma: fracture of vertebra t
fracture of right or left femur 5
fracture of right or left tibia and fibia 2
fracture of coccyx t
Due to unknown causes: osteitis deformans of left femus s
of the joints
Due to prenatal influeness: congenital dislocation of hips I
Due to infection: ankylosis of right hip, tuberculous 2
ankylosis of left knce, ruberculous 1
arthritis of hip, noa-tuberculous 3
arthritis of knee I
chronic arthritis 2
arthritis of sacro-ilias joint 2
Due to traums: saero-iliae subluxation 2
Due to unknown eauses: asrearthritis 2
osteoarthritis of knees 4
Of the muctes
Due to disturbances of innervation: paralysis of muscle, post- poliomyelitic 3
DHEASES OF THE CARDTO-VASCULAK SYSTEM 1
Of the veins
Due to trauma: varicose veins of the leg 7
DISEASES OF THE DIGESTIVE SYSTEMI 31
Of the small infestineNew growths: adenocarcinoma of intestine ${ }^{22}$1
Due to unknown causes: duodenal ulcer 2
Of the colonDue ta disturbances of inacrvation: spasticity of colonI
Of the appendix
Due to infection: acute appendaitis 3

[^29]
Of the antrs

Due to static mechanical abnormality: hemorrhoids it

Of the bile passages

Due to infection: acute cholecjstitis I
Due to statie mechanical abnommality: cholelithiasis 4
Of the abdomen and peritoneum
Due to static mechanical abnormality: femoral hernia I
inguinal hernia 7
diseases of the nenvous systram 2
Due to unknown causes or causes not determinable: trigeminal neuralgia
left median and ulnar neuritis I
unelassiflable, oasexyation 6

b. Distribution by race

The group reported in this monograpb is composed entirely of white subjects. ${ }^{1 *}$ All of them had been born in an English-speaking country and 65 of the 70 were natives of the United States. Of the remaining cases four, 2 men and 2 women, had been born in Ireland and one, a woman, in Scotland. Of the GS subjects, only 2 were Jewish and only 2 emme from homes where a language other than English was spohen regularly, the language in ench case being Italion.

[^30]
TABLE IV

DISTRIBUTIONS BY AGF FOR TFE THREE FOSTMAL GRONTS AND FOR THE TOTAL TEST GROUP

ACE	PIHLADELPIIL ceseral hospltaz		craduate mospital		ORTHOPEDTC thosertal		All Thiree imospitals		
	M	F	M	F	M	F	Malz	Female	Total
50-59	3	4	$\underline{1}$	I	I	3	5	8	13
40-49	3	1	3	1	5	,	11	3	14
30-39	8		2	1	7	3	17	4	21
20-29	2		3	2	3	5	s	7	15
10-19	I	1	1		4		6	\pm	7
Number	17	6	19.	5	20	12.	47	23	70
Aran	3^{89}	47.1	34.3	36.2	32.5	34.t	35.24.8		36.1*1.5
Sigma	11.1	131	130	15.2	11.7	128	$12 \mathrm{x}=1.4$	138 ± 20	12.82

TABLE V

DISTRIBTTIONS EY SCHOOL CRADE REACHED FOR THE THREE HOSPITAL GROUPS AND FOR THE TOTAL TEST GROUP

serioct CRADE REACHED	PHILADELPHIA GENERAL mosprtal		gidabtate HOSPITAL		OnTHOPEDTC HOSPITA.		ALL THEEE ELOSPIThls		
	M	F	M	F	H	F	Male	Female	Total
15-16						1		1	1
13-14		1			1		t	I	2
11-12			1		7	2	8	2	10
5-10			I		2	3	4	2	6
7-8	5	4	5	1	6	5	16	10	26
5-6	6		2	2		1	1 I	4	15
$3-4$	2				I		3		3
1-2									
0		I					*	1	1
Unknown	4			2			4	2	6
Nomber	17	6	50	5	20	12	43	13	\%o
Mean	69	73	78	60	90	9.1	80 ± 4	81 ± 6	8 ± 3
Sigma	22	41	18	14	29	29	27 ± 3	$3.3 \pm .5$	3.0 ± 2

c. Distribution by age

Table IV shows the age distributions by decades for the male and female sub-groups in each hospital and for the total group. The mean age for the patients at the Philadelphis General Hospital, 4 I.r years, was higher thao that for the total group, while the mean ages for the patients as the Graduate and Orthopedic Hospitals, 349 and 33.1 years respectively, were lower. The differences, however, were not great.

d. Distribution by education

The data on educational level are expressed io terms of the grade the subject had reached before leaving school. ${ }^{13}$
Distributions for the separate hospital groups and for the total group are presented in Table V. ${ }^{14}$ There were some differeness between the mean levels for the groups in the three hospitals: the Philadelpbia General fell lowest with a mean school grade of 70 , the Graduate next with a mean of 7-4, 3nd the Orthopedie considerably higber with a mean of 90.

e. Distribution by oceupation

Two occupatiooal seales were employed, the Taussig and the Barn. ${ }^{25}$ The Taussig is a discrete five-division scale based on geoeral typs of occupatioo: I Professional, II Semi-professional and business, III Skilled labor, IV Semi-skilled labor, and V Unskilled labor. The Barr Scale was constructed on the basis of a list of a hundeed representative occupatioos, eacb of which was rated by thirry judges according to the grade of intelligence believed to be necessary for that particular occupation. ${ }^{15}$ Thus it gives an index of

18 Adjustment was made for the odder patients who went mathool at a kime when twelve terms were rooghly cquivalent to cight grades today, and for the English, Irish, or Scorch-born. whose school terms differed io lewgels. Whers, as in masy cases, the patiest stated te had finished "twa or three" or "four or five" grades, the lawer number was always recordedt

It would have been interesting to recond slso the nuenber of grades reprared, but this addiBonal Get was not obtained in all cases and indeed it is tikely to have been forgoten in many.
${ }^{14}$ Ia 3 of elice 4 cases $\mathbf{2 5}$ the Fhitadelphia General Hospital in which no statement as to education could be elicited, the level was probably four pears or below. The fourth case, hourever, was one of the most iateligent men of the group, and it is probable that he had had at Jeast an tighth-grade cilucation.

The z women at the Graduate Hospital whose records for education are incomplete probathy had had the equivalent of five gears of schooling

13 Terman, Generie Studies of Genius, I, Scauford University: Stanford Unirersity Press, 1935, 63-64: 66-69

If Ratinga for octopations other ithan those listed en the sele may be derived by matching the occupation to be rated with that which seems most similar to it, or by calculating 21 intermefliate valut between wo occupations in resembles.

TABLE VI

distributions by taussic occupational classtrication for the THREE HOSPITAL GROUPS AND FOR THE TOTAL TEST GROUP

taussic classi-	GENERAL HOSPITAL		Grapoate HOSPITAL		ORTHOPEDIC HOSPITAL		all thres hospitals		
Ftcation	M	F	M	F	M	\boldsymbol{F}	Male	Female	Toral
1						\pm		1	1
II	4		2		5	4	${ }^{1}$	4	15
III	6		5		2	\geq	13	2	15
IV	6		3	1	4	4	13	5	18
V	1				3		4		4

TABLE VII
DISTRIBUTIONS BY AARR OCCUPATIONAL RATINGS FOR THE THREE HOSPITAL, GROUPS AND FOR THE TOTAL TEST GROUP

3ARR Muting	PHILADELPELA GENERAL HOSPITAL		CRADUATE HOSPITAL		ORTHOREDIG HOSPITAL		ALL THELE HOSPITALS		
	M	F	M	F	H	F	Male	Female	Total
13.00-5399						1		3	I
$1300-1299$					I	\%	1	1	2
\$1.00-12.99	1		\pm		1	2	3	1	5
10.00-1099	2		2		4	1	8	I	9
900-9.99	3		2		I	1	6	1	7
800-899		5	1	4		1	1	10	18
7.00-7.99	5		2		2	1	2	1	10
$600-6.99$	1		1	1	2	3	4	4	8
500-599	3		1		2		5		6
$400-499$	1						r		3
$300-3.99$	1				\%		2		2
Number	17	5	10	5	14	81	41	21	62
Mean	7.6	8.4	86	79	9.7	944	800^{4}	8.8 ± 5	$8.3 * 3$
Sigra	2.1	0.0	$1{ }^{\text {B }}$	09	26	2.4	$23 \pm .3$	2.1 ± 3	2.3 ± 7

the intellectual level characteristic of the occupation, while the Taussig Scale simply classes together occupations similar in type of work involved. Distributions on the Taussig Scale are given in Table V1. ${ }^{1 T}$ Inspection of ${ }^{17}$ At the Philadelphia General Hospital 6 women, 5 boasewives and one student, could not
the table will show that the Orthopedie Hospital group contained the Largest proportion of cases from the professional and semi-professional classes. The Philadelphia General and Graduate groups contained relatively larger proportions of cases in classes III and IV, skilled and semi-skilled labor. As a whole the distribution on the Taussig Seale sbows that the subjects are fairly equally divided among the semi-professional and business, the skilled labor, and the semi-skilled labor classes.

Ratings on the Barr Scale are presented in Table VII. ${ }^{18}$ The three occupational distributions, like the educational, overlap considerably, with the mean for the Graduate Hospital (8.36) bigher than that for the Philadelphia General (7.73), and the mean for the Orthopedic (8.75) higher than that for the Graduate. This overlapping is just what would be expected from a knowledge of the gropulations served by the thret hospitals. ${ }^{19}$

3. COMPARATIVE FINDINGS IN FOUR DIAGNOSTIC GROUPS

The majority of the cases, 45 of the 70 , fall into three main groups aceording to their medical diagnosis: injuries of the bone and dislocations, infections of the bones or joints, and disenses of the digestive system. The last group may be divided into two if the cases of hernia or hemorrhoids are separated from those of duodenal ulcer, intestinal obstruction, appendieitis, eholecystitis, and cholelithiasis. Before the group of 90 cases is considered as a whole, a preliminary comparison of the status of these four diagnostic groups is worth while.

Table VIII shows the mean Ievels for the four groups io age, education, oceupational rating on the Barr Scale, and scores on the Stanford Binet and Pintner Non-Language Tests, together with the sigma deviations from the
be clastificd on the Taussig Scale. At the Graduate Hospital 4 women could not be classifert. all were housewives At the Orthopedic Hospital one man and one woman, rach crippled and unable to work, and 5 yourg men, all students, could not be classifed.
${ }^{21}$ All cases were rated with the excoption of one subject at the Philadelphia General and 7 subjects at the Orthopedic Hospial. These were either stadente or ubemploged cripples.

After some consideration housewives were axigned a fating of 8.37. This was obraiped by averaging the Eart rataga for the anok and tife trufor, a process which secrited to be induand by the fature of the occupation. In some cases the reticg is noo low and in chers obriondy too high. It would protahly have been faircer to give each bousewife the raing whikh would have been assigned trer huitand, but this solution dul not sugget itself until the opportuaty for obtraining the necessary informscoan had prased.
ip Very few of the ward patients ar tie Philadelphia General Hospital pay any fees, and to Gir 25 is known, none of those induded has At the Cradurte Hospital. 45 per cent of the ward patients paid an arerage fee of $\$ 1.00$ per day. At the Orthopedic 1 lospital, 52 per reat of the ward patients paid an a verage of 58.37 per day-
means for the total group in education, occupational rating, and the two mental tests. ${ }^{20}$ It will be evident that the groups of patients with arthritis and bone fractures and dislocations make higher mean scores on the Stanford Binet and Pintacr Non-Language Tests than either of the groups of

TABLE VIII

COMPARATIVE FINDINGS FOR FORTY-FIVE CASES DISTRIBUTED BY MEDICAL DIAGNOSIS

	fractures ANS DISLDCATIONS		castroINTESTMNAL OTHER THAN HERNIA AND HEMORkrroips	HERNIA AND HEAMOR- 8Uloids
Number of cases	1)	33	12	9
Mean Levels				
Age	31.3	36.1	37,2	39.6
School grade reached	7.9	10.2	7.1	7.4
Occupation: Bare Seale	$7 \cdot 9$	9.6	8.5	8.6
Seanford Dinet Scale .	168.1	$17^{8.5}$	152.5	1550
Pintner Non-Language Test	353.3	377.0	347.1	353.0
SICSA DEVIATFONS FROME THEEAEANS				
FOR THE TOTAL CROUP				
School grade reached .	-.I	$+7$	-3	-. 2
Oceupation: Barr Scale	$-.2$	$+6$	+.2	+.2
Stanford Binet Scale * *	+ 2	$+6$	--4	-. 3
Fintrer Non-Language Test	0.0	$+3$	-.t	0.0
PERCENTAGE DISTRIDUTION				
OF TIIE CROUP EV HoSpital				
Philadelphia General .	36	8	42	78
Graduate . . .	19	8	50	22
Orthopedic . . . -	45	8_{4}	8	0

patients with gastro-intestinal disorders. The first two groups surpass the mean for the total number of patients on the Stanford Binet Scale while

[^31]the second two groups fall belnw it. The differences are similar to the differences in education, and the latter depend on the differing proportions from the three hospitals in the various diagnostic groups. Since the Orthopedic Hospital is superior to the other two in the educational level of the patients studied, the arthritic group, with in of 13 patients from the Orthopedic, reaches a higher mean level in education than the others. Mean scores on the Pintner Non-Language Mental Test, which are probably less affected than the Binet scores hy educational and cultural status, are similar in all four groups.
The slight differences between the mental levels in the four diagnostic groups apparently reffect only differences in selection; it seems clear that they do not depend on the positive or negative effects of any one or more disease conditions. This is an important point, for there may be less controversy as to the normality of mental functioning in one diagnostic group than in another. In cases of hone injury or of dislocation, when the patient has heen in good health up th the time of the accident which caused his injury, when be is without pain and the treatment is proceeding well, there can be no doubt that he reacts normally to the tests given him. In the gastrointestinal eases, in some instances after an abdominal operation, there may be some question as to whether the patient reaets normally. It is important therefore to note that the patients of this character reached the levels expected of them on the basis of their educational status just as those of any other group did. In view of the fact that each of the four groups is smaill, the figures are indeed extremely consistent. It goes without saying that in the case of all patients every precaution was taken to ensure that the findings would he as trustworthy as possihle, and examinations were made only when the patient was in good working condition and when he felt ready for work.

4. COMMENT ON THE SAMPLE

Two criteria were available for pheing this small sample of adult subjects in relation to larger populations: first, the occupational distribution of the 1930 census for the city of Philadelphia and, second, the educational and occupational data for the very large groups of adult men examined during the War. The first criterion, of course, provides only an index of the similarity between the occupational distributions for the test group and the city population; it does not indicate, as the second does, anything as to the educational or intellectual level of the test group.

The 1930 census of the United States, which was made during the first of the three years in which these subjects were examined, shows occupational distributions for the city of Philadelphia which are expressed in Table IX in terms of the percentages of the native-white male, native-white female, and total native-whire population over ten years of age and gainfully em-

TABLE IX

PERCENTAGE DISTAIEUTION BY OCCUPATION OF THE NATME-WHTIE POPULATTON OF PHILADELPHIA AND OF THE EMPLOYED AIEMAERS OF THE TEST GROUP

-	NHALE		FEMEAES		TOTAL	
	Phitadefplia pogulation	Tetr growp	Phitadelphia popularon	$\begin{aligned} & \text { Test } \\ & \text { growp } \end{aligned}$	Philadelphia poptuation	$\begin{aligned} & \text { Test } \\ & \text { group } \end{aligned}$
Agriculture	- \quad	0	-	0	-	0
Forestry and fishing	- -	0	-	0	$-$	0
Extraction of minerals	. -	2	-	0	-	2
Manufacturing and me chanical industries	42	39	29	18	37	35
Transportation and comt munieation	11	25	3	9	10	21
Trade	20	22	11	9	15	19
Publie service (not else where classified) .	5	0	-	0	3	0
Profestional service.	6	2	13	28	7	5
Domestic and persona service.	- 3	8	12	18	12	12
Clerical occupacions	- 13	\pm	31	18	15	6

Nore: Dash $(\rightarrow)=$ less than one per cent.
ployed in the ten oceupational divisions. ${ }^{21}$ The corresponding percentages in each of the occupational divisions for the test group are phaced beside those for the city population. Inspection of the rable shows a marked simi-

[^32]larity between the occupational distributinns for the test group and for the city population. For both the tntal test grnup and the white males the percentages in the divisions of manufacturing and mechanieal industries and of trade are very nearly the same as the percentages for the city population in these two divisions. The anly discrepancies which are at all noteworthy are in the division of transportation and communieation where the percentages for the test group exceed those for the city population and in the clerieal occupations where the npposite relationship appears. On the whole it is clear that the test group, small as it is, represents a good sample of the ciry population from the point if view af the occupational divisions listed in the census report. Whether the test group samples the upper, middle, or lower strata of these occupational divisions eannot, of course, be determined from these figures, and for evidence on this point one must turn to the analyses which have been made of the oceupations and Army Alpha scores of the recruits examined during the War.
A convenient method of estimating a mean Barr Seale rating for the oceupations of the men tested by the Army Alpha during the War is porsihle on the basis of Fryer's and Symonds' work with the Army data. Fryer reported the corrected Army Alpha scores for 96 occupations. ${ }^{22}$ From these Symonds selected the occupations representative of a score of about 48 on the Army Alpha, that is, a score which appeared to be typical of the average man. ${ }^{23}$ These occupations, except for a few which were not clearly designated, have each been assigned a Barr rating. They are as follows:

The range of these occupations on the Barr Scale is surprisingly wide, 429 to 10.61 . The mean rating is 8.12 . This figure is very close to the mean Barr rating of 8.01 which was found for the men of the test group. ${ }^{4}$ The fact that the men of the test group fall so near the meao rating for the occu-

TABLE X

perctintage distributton by sehoot crade reached of males
IN THE TEST GROUP AND OF THE NATIVE-WHITE DRAFT OF the american army

SCHOOL GRADE vexchien	TEST GkOUP	AxMry
15-16	0.0	2.0
13-14	2.3	3.3
11-tı	18.5	68
9-10	9.3	11.8
78	37.3	39.8
$5-6$	25.6	20.1
3-4	7.0	17.2
t-2	0.0	3.8
-	00	1.9
Number of subjects Mean grade ceached	$\begin{aligned} & 43 \\ & 8.0 \end{aligned}$	$\begin{gathered} 60,250 \\ 6.9 \end{gathered}$

pations which have been thought to characterize the man of average intelligence as indicated by Army Alpha score, rogether with the similarity in occupational distribution shown between the ter group and the city popu-

[^33]lation, is evidence that the test group is a fairly good sample with regard to level of occupation, that is, grade of intelligence required, as well as type of occupation.

The education of the adults in the test group may be compared directly with the education of the native-white draft of the Army. ${ }^{23}$ The percentages of each group reaching the various school grades, which are presented in Table X, are very similir. ${ }^{\text {as }}$ The mean for the test group is somewhat higher than that for the Army, but the chief reason for this difference may well be the faet that the test group was srudied fifieen years after the Army group.

The various comparisons which have been made show that the test group is a good sample of the occupational distribution of the city of Philadelphia, that it has a mean Barr rating which is very close to that of the occupations considered to be representative of the man of average intelligence as indicated by Army Alpha score, and finally that, although its mean school grade is somewhat higher than the Army mean, it is nevertheless very similar to the large Army sample from the point of view of educational distribution The findings are sufficient to indicate that it is a good sample of the middle levels of the population, and as such a valuable basis for the study of mental functioning in the adult period.

[^34]
III

THE TESTS

\author{

1. Basis for Selection
 2. Outline of Tests
 3. Examination Periods
}

I. BASIS FOR SELLETION

THE tests were chosen to meet the problem of the aphasia study, that is, to establish and analyze for the aphasic patients whatever changes might occur in language and thought processes. The complexiry of the changes in aphasis, as they had repeatedly been demonstrated in the lizerature, made it necessary to study a wide variety of performances, ranging from the simplest speech functions to complieated processes of abstract thought. Only the simplest speech processes, such as seperting essy words and phrases or naming common objeers, could be assumed to be entirely within the ability of all adules except the low-grade feebleminded and the mentally deteriorated. For all the more complicated performanees, including responses on both intelligence tests and educational achievement tests, tentative adult norms had to be established before the aphasie performances could be evaluated. Consequently all the tests of the aphasic battery, with the exception of the simplest speech tests, were given to the normal group.

[^35]While some feis intelligence tests for adults exist, notably the Army Alpha and the various examinations for high school or eollege students, none was sufficiently comprehensive or sulficiently analytic for the apbasia study. In any ease, all the tests for college students could immediately be eliminated as too diffeult for the average adult. It was therefore necessary to construct the battery largely from the mental and educational achievement tests in use with ehildren. Among these tests, an cfiort was made to choose those with content best adapted to adult interests. In their use with children most of these tests have been shown to be reasonably valid and reliable. For others no data have been presented. It must be noted, however, that the tests cannot be assumed to be valid and reliable for adults on the basis of results for children.

2. OUTLINE OF TESTS ${ }^{9}$

In the following outine of tests and in the presentation of results in Chapter IV, the tests have been divided into three groups: Language Intelligence, Educational Achievement, and Non-Language. This division is a more or less artificial one, and there are many points of overlapping between the groups, but it is a convenient practical arrangement.
I. Language Intelligence Tests
a. Controlled Association Tests
r. Opposites Tests

Oral Form: Whipple's List IV
Printed Form: new list constructed to approximate List IV in difficulty
2. Mixed Analogics Tests

Oral Form: constructed from Van Wagenen's Test B
Printed Form: constructed from Van Wagenen's Test A
b. Kelley Trabuc Completion Exercise Beta
c. Vocabulary Tests

1. Oral: Stanford Binct Vocabulary Ter
2. Printed: Thomdike Test of Word Knowledge
d. Stanford Binct Scale
e. Miscellaneous Terts
3. Absurdities Tests: Oral and Printed Forms constructed from absurd statements suggested by Ballard and others
4. Pintner-Toops Revised Directions Test
[^36]
II. Educational Achievement Tests

a. Reading Tests

1. Gray Oral Reading Tests
2. Thorndike McCall Reading Scale
3. Chapman Unspeeded Reading Camprehension Test
b. Spelling Tests
4. Gates Oral Spelling Test
5. Morrison McCall Spelling Scale
6. Stanford Achicvement Dictation Test
c. Writing a Letter
d. Arithmeric Tests
7. Stanford Achievernent Computation Test
8. Stanford Achievernent Reasoding Tes:
III. Non-Language Tests
a. Tests from the Pintner Paterson Performante Scale
9. Mare and Foat
10. Seguin
11. Substitution
b. Pintner Non-Language Mental Test
c. Cancellation
d. Immediate Recall: Kuhlmann Binet
c. Drawing a Chair
f. Goodenough Drawing Scale
g. Porteus Maze Test

3. EXAMINATION PERIODS

Ten to fifteen hours were required to give the complete battery of tests. Since the normal working period was generally a half hour to an hour, with one and sometimes two periods a day, the examination required ten days to two weeks to complete. A number of patients were discharged before all the tests had been given, but since they were not given in a definite order all of the tallies are less chan the total number of cases in the group. ${ }^{3}$

[^37]distributions are shown in Table XII. The total distribution on this test is one of those most nearly approximating the normal cuive.
Both vocabulary tests, the Stanford Binet and the Thorndike Test of Word Knowledge, were easy to administer and fairly satisfactory in dis-

TABLE NI

RANGE OF SCORES, MTEAN SCORES, AND SIGMAS ON ALL TESTS OF THE BATTLRY

	N	RANCE	MEAN	S1CAM
f. LANGUACE INTELUCENCE TESTS				
Oral Opposites: Score . .	65	9-20	17.8 ± 0.3	2.4 ± 0.2
Time .	65	141-37	71.0 ± 2.9	23.5边.
Printed Opposites: Score	51	9-20	16.2 ± 04	3.1 ± 0.3
Time	51	$130-30$	742 ± 49	$3.5 \pm 3-4$
Oral Analogies .	4	$6-31$	206 ± 1.0	$6.5 \pm \pm 0.7$
Printed Analogies	60	7-34	21.0 ± 0.9	6.7 ± 0.6
Kelley Trabue Completion Betz	57	4.0-10.7	$7.8=02$	1.3 ± 0.1
Stanford Binet Vocsbulary .	69	25-86	54.5 ± 8.9	15.6 ± 1.3
Thondihe Word Knowledge	54	$18-98$	61.8 ± 2.8	20.4 ± 2.0
Stanford Binat Scale . . .	65	96-234	163.6 ± 3.1	25.0 ± 22
Oral Absurdities .	41	$0-10$	$6.1 \pm 0 \mathrm{~m}$	2.4 ± 0.3
Printed Absurdities . .	11	1-10	7.2 ± 0.3	2.2 ± 0.2
Pintner-T'oops Directions	62	5-27	156 ± 0.6	4.8 ± 0.4
If. EDUCATONAL ACHEIVEMENT TESTS				
Gray Oral Reading Paragraphs, Set IV .	49	129-40	73.7 ± 30	20.6 ± 2.1
Thorndike MeCill Reading	59	54-33	247 ± 06	46 ± 04
Chaprnan Reading-Comprehension	42	3-29	16.4 ± 1.0	66 ± 0.7
Gates Oral Spelling - ,	53	9-36	26.1 ± 1.0	6.9 ± 0.7
Morrison MrCall Spelling .	59	9-49	$39^{8} \pm 1.1$	8.3 ± 0.8
Stanford Achievement Distation	58	32-121	906 ± 2.8	21.1 ± 2.0
Writing a Letter .	36	$2.8-80$	5.4 ± 0.2	1.2 ± 01
Stanford Arithrnetic Computation	55	10-45	26.4 ± 1.1	8.3 ± 0.8
Stanford Arithmetic Reasoning	54	$8-38$	22.8土07	54 ± 05

Notr: Each mean and sigma is followed by its sandard ecror.

	N	Essige	3IEAX	sicaca
III. SON-LANGCAGE TESTS				
Pinmer Paterson				
Mare and Foal: Time .	50	52-8	28.6土 1.3	10.5 ± 1.1
Segrin - . . .		$2 \mathrm{~S}-9$	15-5 $=0.9$	63 ± 0.6
Substitution . -	45	32550	1048 ± 6.5	44.1544
Pinner Non-Lengrage		$80-5=6$	356.4 ± 14.4	10.8 ± 102
Imitation . . -	56	O-12	6.3 ± 0.4	2.7 ± 0.3
Easy Learning -		$8-50$	37.8 ± 1.5	10.9 ± 2.0
Hard Learaing	56	$6-49$	33.6 ± 1.3	98 ± 0.9
Draming Completion.	56	6-20	134 ± 0.4	$3-3 \pm 0.3$
Rerersed Drawing : .	56	$0-9$	5.5 ± 0.3	20 ± 0.7
Picture Reconstruction		2-28	12.8 ± 0.7	5- ± 04
Canceltation . . . -	46	5-34	19.6-10	6.8 ± 07
Kuhlmann Imonediare Recall	44	433-5\%	$373-0 \pm 10.7$	70.7-7.5
Drawing a Chair	27	6-26	15.7土 1.0	52 ± 0.8
Goodenough Drawing		4-50	28.2 ± 1.5	10.6 ± 1.0
Porters Mate . .	45	43-216	169.5 ± 5.5	34.6 ± 37

Nors: Each mana and sigma is followed by its standard errar. .
criminating the adult subjects. The distributions are presented in Tables XIII and XIV. The Stanford Binet, as is usually the cass, furnished an ercellent preliminary index of the patient's level together with various clues as to his cultural development, his intellectual reactions, and his interests and artirudes. Both tests were found to be fairly reliable. The correlation between the two lists of the Stanford Binet was +95 with a standard error of .02 for 4 x cases ${ }^{3}$ The correlation between odd and even items of the Thorndike Tess of Word Knowledge was $\div 99 \pm .02$ for 52 cases

The distributions of mental ages on the Stanford Binet Scale appear in Table XV. ${ }^{4}$ Mental ages for these adutt subjects are to be understood in a

[^38]table Xil
distribution of scores on the relley trabue completion EXERCISE RETA

coone	Meter	femele	Total
10.0-10-49	2		2
9.5-999		1	1
90-9-49	5	2	7
8.5-8.99	6	1	7
8.0-8.49	6	6	12
7.5-7.99	7	3	10
7.0-7-49	5	1	6
6.5-6.99		3	3
$60-6.49$	4	1	5
5.5-5.99		1	1
5.0-549	1		1
4.5-499			
400449	1	1	2
Number	37	20	57
Mten	7.83	762	780
Sigma	1.29	1.39	1.27

Table XIII

distribuition of scores on thie stanford binet vocamulary test

score	Mats	FEMALE	TOTAL
$84-89$	2		2
-8-83	2	1	3
72-77	2	1	4
66-71	3	3	6
60-65	7	1	8
	9	4	13
4^{8-53}	8	2	10
42-47	7	3	10
$3^{5}-45$	3	3	6
30-35	2	4	6
24-29	1		1
Number	46	23	69
Mean	55-30	52,83	54-49
Sigmz	13.05	15.10	75.59

limited sense, not as units of development corresponding to chronological age, but simply as scores. The highest possible Stanford Binet score is 234 Only one individual attained this maximum and only 4 others reached or exceeded 210 . There may well be an end error in these 5 scores. Furthermore, there may possibly be an end error in the scores of the 15 other cases passing one or more tests at the XVIII-year level. A glance at the distribution, however, shows no piling up of seores in the higher steps.

TABLE XIV

DISTRIBUTION OF SCORES ON THE THORNDIEE IEST OF WORD RNOWLIDGE

scone	Merer	FEMALE	20TAL
91-100	=	2	4
8:-90	3	1	4
71-80	9	4	13
61-70	6	5	12
51-60	5		5
4)-50	4	2	6
3)-50	2	4	6
27-30	I	1	2
15-20	3		3
Number		19	
Mean	$6 \mathrm{r} .54$	62.21	$6 \mathrm{r}, 7^{5}$
Sigma	2 H 41	20.47	20.40

Despite all the justifiable criticisms whicb have been made of the Sunford Binet Scale, particularly for use with adults, it stands up well under analysis: inspection of the percentages passing each subtest, as shown in Table XVI, indicates that few of the tests are badly misplared. ${ }^{5}$ For the
group. The measure used wis Woodwarth's socalled S.D. (R. S. Woodwenth, TeNle for Fins.

 shoeld be recognized that as the hasal age becomes higher. the possitie size of the SD is prozressively lossened and no correction for thas change is possib'e, For the normal zdatts the figures are:

	Mran SD.	$5 \mathrm{~S}_{\mathrm{g}} \mathrm{max}$	N
Men	31.74	15, It $^{\text {d }}$	42
Women	31.26	10,32	23

The measure of scatter photed against Stenford Binct score gives a trangulat-Shyed instin bution probably remitung in large purt from the cffat mentioned abore of the raicing of the basal age.
${ }^{\text {s Several }}$ of the terts require particular comment. The weights, IX 2 , uxd at ibe Gradute

TABLE XV
DISTRIBUTION OF SCORES ON THE STANFORD BINET SCALE

SCORE	MALE	FEMALE	TOTAL
$220-234$	1		1
$205-219$	4	2	6
$190-204$	4	1	5
$175-189$	6	1	7
$160-174$	11	5	16
$145-159$	9	6	15
$130-144$	5	5	10
$115-129$	2	1	3
$100-114$		1	1
$85-99$	42	23	1
Number	167.9	27.9	65
Mean	26.0		25.0

adults examined, the order of the tests from the most to the least difficult was as follows:
$\left\{\begin{array}{lll}\text { 1. XVIII } & 6 & \text { Ingenuity } \\ \text { 2. } & 4 & \text { Reproduces passage } \\ 3 . & 5 & \text { Idigits backivards } \\ \text { 4. } & 1 & \text { Vocabulary (75) } \\ \text { 5. } & 2 & \text { Paper cuting }\end{array}\right.$

2nd Phadelphia General Hosphats, were dicoovered, after much of the resting had been daties to tave developed inaccuracies. Srone they may have been intaccurate for some tatic, all the results whith had previousty been obtaned were ditcarded The ranth of this test ta the above outlae is based on che record's from $4 x$ cases only. 34 at the Orthopedic and the balance at the Philadelphis General Hospital. Sine the Onshopeduc group is generally mupenor to the other two, the relatue dificulty of thas tese does not depend on an averweigblagg of law-grade cases.

No rank was assigaed to the Code Test, XVI 6 Thus was one of the few texte for which administative difficultics were encountered In tach hospatal many of the subjects refused to attenipt it at all, others starsed in a baif heaned Eashan but aceomplashed very litele. The tesk was not only unsausfictory as an imdex of unelligence for these adults, but it was so distastetal to many of them chat if was eventually drapped from the serxes, and replaetd for purposes of storing by an alteratere.

The Frec Associacion, X 6, was a scoond test whach presented same admunsisative difhculues. In attempting to produce as many words as pessable an three menutes, the adules were decidedly more seif-conscious than dhiden Some of them complamed that the test made them "feel foolish." (Observatons of behavior seemed to inducate that the test was sometmes an index of emononal seability.) Interestangly enough, the Negrocs appeartd to be more conn. fortabic in this test situation that whe whites.

- Io the Army data the zests of zn abbrevated Sunford Binex Scafe are ranked in order of difficulty for white males A simular ranicong of rects for the white mades of this group gives a rank torrelation of +.86 with the Army lisk.

TEST RESULTS

6.	XVI Al.		28 sylimbes
7.	XVIII	3	8 digits forwards
8.	XVI	1	Vocabulary (65)
9.		5	6 digits backwards
fro.		2	Fables
(11.		4	Enclosed boxes
12.		3	Difference between abstract words
13.	XIV	6	Clock
fr4.		Al. ${ }^{\text {I }}$	7 digits forwards
15.	XII	3	Ball and field
16.		6	5 digits backwards
\{17.	XIV	5	Arithmetic reasoning
\%8.	X	6	60 words
19.	XII	4	Dissected sentences
$\{20$.	XIV	1	Vocabulary (50)
21,	X	3	Designs
22.	XIV	3	President and king
33.		4	Problems of fact
24.	XII	5	Fables
25.		8	Similarites
26.	XIV	2	Induction
27.	X	4	Reading and report
28.	XII	7	Pictures, interpretation
29.	X	Al. 2	20-22 syllables
30.	XII	1.	Vocabulary (40)
31.	IX	6	Rhymes
\{32.	X	Al.r	6 digits forwards
\{33.	IX	2	Weights
34.		4	4 digits backwards
\{35.	XII	2	Abstract words
\{36.	X	2	Absurditits
37.	IX	5	3 words in sentence
$\left\{3^{8 .}\right.$	VIII	r	Ball and field
39.	IX	I	Date
40.	X	1	Vocabulary (30)
4 I.		5	Comprehension
42.	IX	3	Makes change
43.	VIII	2	Counts 20-1
44.		4	Similarities (2)
45.		5	Definitions
46.	VII	3	5 digits forwards
47.		6	Copies diamond
48.		$\mathrm{Al}^{\text {a }}$ 2	3 digits backwards
49.	VI	2	Matilated pictures

TABLE Xy

PERCENTACE OF MEE TEST CXOUP PASSING EACII TIEM OF THE STANFORD HINET SCALE

TEs\%	34	P	TOTAL	TES	1	F	total
7447				Teank (cont)			
1. Rightand tef	100	100	100	Al.i. 6 digua forwards	90	87	8
2. Mtutased Prumet	100	45	多	Als. 20-23 sfllables	81	86	84
3. Count its fenaics	110	100	100				
4. Conprehenion	100	100	100	TEAX ${ }^{\text {m }}$			
5. Namerateins	100	100	100	1. Socabulary (40)	90	74	85
6. 16-15 ifltater	100	100	100	3. Absurat words	97	87	94
				9. Ditland Grid	6	$4{ }^{4}$	55
Mranst				4. Pumeted mentences	81	8	63
	300	100	100	9. Inder	71	74	72
2. Pixurth decripfinn	100			6. sdectis back warls 2. fxturey, interate.	64	4	59
3. s dipin Pormard	100	96	58	sation	79	\%	78
4. Tret baw hack	100	100	100	8. Similarites (3)	74	70	72
3. Diferimer	100	100	100				
6. Copion diamond	100	96	4.	Fhat 2 It			
Al t. Dayt of meek	100	\$00	100	2. Hocsturary (so)	69	56	64
Als. 3 digits batk wardit	100	86	95	2. Induction 3. Fretident and king	85	63	77
					76	${ }^{8}$	66
Tast vits				4. Problems of Eat 5. Arithmetic ravon. Ing	69	67	C6
9. Datland feid	100	87	95				
2. Counts 20-1	100	95	\%		71	44	62
5. Comprehansion	100	100	10	6. Cock	55	30	46
4. Similaritien (5)	900	06	93	Al.f. 7 diget forwardy	64	32	35
5. Defaritions	100	96	$5{ }^{5}$				
6. Vocibutiry (10)	100	100	100	TE4Em			
				- Vocabulary (6)	26	30	28
Y4.ty				2 Fukey	$3{ }^{3}$	35	37
1. Dite	97	96	97	3 Diference between			
7. Wrights	91	86	89	alatract word,	36	44	$3{ }^{3}$
3. Asker fange	97	500	97	- Enclond baxes	42	76	37
4. 4 digits backwardt	95	87	93	56 dista batiwards	38	36	39
5. 3 wards in menterke	97	95	95	6 Caxie	30	-	15
6. Rhymet	85	86	86	Atr. ximyarics	33	23	23
A.t. 3somis	100	108	100				
				Tese 8 vilt			
TRall x				- Vocabulary (75)	14	33	84
1. Vocabulary (30)	97	100	98	2 Paper cuturg	20	22	20
2. Absurdites	95	95	94	3-8 digizs fortirds	35	17	16
3. Desjens	64	64	64	4 Reproduces pasoge	10	9	9
4. Reading and report	74	82	77	5. 7 digits buekwards	34	0	9
5. Comprehensian 6. Co wrods	$\begin{aligned} & 97 \\ & 62 \end{aligned}$	$\begin{gathered} 100 \\ 68 \end{gathered}$	$\begin{aligned} & 95 \\ & 62 \end{aligned}$	6. Ingexury	10	9	6

All the other tests were passed by each member of the group who fell sufficiently low to have been given thern. The mean score for repeating digits forward was $6.69 \pm .12$ with a sigmn of $1.02 \pm .09$, and the mean score for repeating digits backwards $4.87 \pm .14$ with a sigma of $1.16 \pm .10$. An end error was present in the distribution of the former, but not in that of the latter.

Neither of the Absurdities Tests is adequate in the present form. Of the two the Oral gave the better distribution. The construction of a longer absurdities test would probably be well worth while, for the detection of absurdities seems to be an excellent test problem for adults. ${ }^{*}$

The Finzner-Toops Revised Directions Test proved a convenient introduction to longer printed tests, and the rotal distribution of scores was satisfactory, but the diversity of the activities required by the various items made it difficult to interpret the total score.

2. EDUCATIONAL ACHIEVEMENT TESTS

The seores on the Gray Oral Reading Test are combined time and error scores. ${ }^{8}$ The results reported in the second section of Table XI are based on only those subjects able to attempt reading as difficult as that of Set IV, that is, on 57 of the 68 subjects to whom the oral reading test was given, and the mean of 73.7 is consequently slighly lower than a mean for the total group would be. The distribution shows a marked negative skew.

The two reading comprehension tests, the Thorndike MfCall Realing Scale and the Chapman Unspeeded Reading-Comprehension Test, were both fairly satisfactory for the adults examined. The first had a slight advantage from the point of view of the regularity of the distribution, which is presented in Table XVIL. ${ }^{0}$ The second, however, is a little better adaped to adults from the point of view of content.

The distributions for the three spelling tests all showed more or less nega. tive skew. Those for the Gates Oral Spelling and the Stanford Achieventent Dictation Test showed much less skew than that for the Morrison MtCall.

[^39]DISTRIBUTION OF SCORES ON THE THORNDIEE MCCALL READING SCALE

SGORE	MAEE	FEMALE	TOTAL
$3 \mathrm{I}-33$	4	\mathbf{y}	
$28-30$	8	6	5
$25-27$	9	1	14
$22-24$	8	8	10
$19-21$	4	2	16
r6-18	4	3	6
$13-15$	1		7
Number	38	21	1
Mean	2492	24.24	59
Sigma	4.75	4.40	2468

The Gates Test was quickly administered and readily accepted by adult subjects. The correlation of alternate jtems is $\$ 6 \pm .04$. For the 53 adults examined the order of difficulty of the words is as follows:

The Morrison McCall Spelling Scale is not sufficiently difficult for adults from average or near-average levels of the population, ${ }^{30}$ but the Stanford Dictation Test is fairly satusfactory from the point of view of ats dificulty. A cernain amount of negasve skewness, such as appeared on both the Gates and the Stanford Tests may be characteristic of the scores for adult subjects no matter what the content of a legatimate spelling test, for a large number of the words which may justufiably be included, whout making the test a

[^40]
TABLE XVIII

DISTRIBUTION OF SCORES ON THE STANFORD ACHIEVENENT ARITHMEIIC COMPUTATION TEST

scose	mekes	feactie	totas
45-48		I	I
41-44	2		2
37-40	2		2
33-36	4	2	6
29-32	5	1	6
25-28	1	5	16
21-24	6	6	12
17-20	6	2	8
23-x6	r		I
9-12		1	\pm
Number	37	18	55
Mean	26.92	25.33	26.40
Sigma	6.99	7.35	8.31

stunt performanee, are within the ability of many adults. In other words, there is reason to believe that spelling is an activity which is firly adequately acquired at adulc levels by persons of moderate as well as persons of higher intelligence and education.
logical conditions where sentence dincation test are impossible. The correlation of alternate fitems is $+.94 \pm 02$.

The words of List I fill in the following order of dufficalty:

1. tun	18. periect	35. reference
2. top	19. nearly	35. divide
3. red	12a.filth	37. miate
4.book	2x. friemd	35. plestant
(5.play	22. led	39. necresery
\{6. mine	23. folks	40. annual
7. with	34. $\mathbf{1 0 y w a y}$	41. crimer
8. sea	35. desire	42. character
9. lay	16. therefore	\{43- separate
10. add	27. Writen	44.- committee
$\left\{\begin{array}{l}11 . \\ 12 . \\ \text { easy }\end{array}\right.$	fis. pmix	445. ammense
12. done	$\left\{\begin{array}{l}\text { 29. arracge } \\ 30 . \text { poprifar }\end{array}\right.$	14. suguainance 47. dusipliac
154. tittd	130. cricbration	48. prinaple
f 5 , aliks	32. search	49. pudgratent
16. shut	\{33. interest	
177. feasoul	34. beight	

Scores for the test of 1/frizing a Lenter are seale values of the Nassau County Supplement to the Hillegas Scale, a sealing system which is probably less adequate for the productions of adules than for those of ehildere: The writing of letters was a task which some of the adults did not aceepr readily, but which would be more genezally aceeptable if 2 satisfectory pretext for the letter wete arranged.
The distribution of scores on the Stanford dehievement Arithmetie Computation and Reasoning Terts, which are given in Tables XVIII and XIX, are both grod. The tests are apparently quite adequate for adults of the status of those examined.

TABLE XIX

distrieution of scores on tite stanford achievement armingetic
REASONING TEST

scote	Hute	femate	T0742
3^{6-39}	1		!
$\begin{aligned} & 32-35 \\ & 3 y^{3}-31 \end{aligned}$	3	2	$\begin{aligned} & 5 \\ & 6 \end{aligned}$
24-37	6	1	7
20-33	12	5	17
16-19	6	7	13
12-15	3	1	4
$8-11$		1	1
Number	37	17	54
Mean	33.86	20.47	32.80
Sigms	5.97	6.05	5.39

3. MON-LARTGUAGE TESTS

The Large majority of the tests of the Pintnet Paterson Performance Seale are far too casy for adules from average or near-averame levels of the population. A few of them, the Mare and Foal (time score), the Seguin, and the Substitution, were moderately discriminative for the adults examined; and the ranges of scores, means, and sigmas for these have been presented in the third section of Table XI. None of these tests is particularly valuable in studying the normal adelt nor interesting to him, but several of them are valuable in studying low-grade or deteriotated enses.

TABLE XX
DISTRIHUTION OF SCORES ON TIE PININER NON-LANGUAGE MENTAL TEST

scorf.	M4.E	ffunte	Soral
525-575	I		1
475-524	7	1	8
425-474	4	3	7
375-424	5	3	8
325-374	8	5	13
275-324	3	5	8
225-274	7		7
175-224	I		I
$125-174$	8		1
75-124		2	2
Nurnber			
Mean	365.78	337.63	356.43
Sigma	110.67	98.26	107.80

TABLE XX1

DISTRIBUTION OF SCORES ON TIE FORTEU'S MAZE TEST

score	MALE	FEalate	total
216-227	I		1
204-215	3	4	7
192-203	7	I	3
180-191	6	3	9
108-179	7	2	9
156-167	3	4	7
144-555	1	2	3
132-143		2	2
120-131		I	z
108-119	7		I
96-107			
$\begin{aligned} & 84-95 \\ & 7^{2}-83 \end{aligned}$		1	I
$60-71$			
4^{8-59}		I	1
Nurnber	24	21	45
Mean	177.75	16000	16947
Sigma	21.53	3928	34.60

The Pintner Non-Languge Test is an interesting one; it presents material and requires performanees not involved in the majority of other tests, but any exact determination of the abilties required by the various subterts for adult subjects or the reliability of the extimtes is impossible. The distributions of total scotes are given in Table NX. The distributioas of scores on all the sub-esest bat the Easy Learning were fairly satistactory. Experience with the adule suhjects show ed that they often had dificulty understanding the problem of the Reversed Drawing Test.

The Cencell:tion Test was included as a check on the results of the more complex ters. The distributions were positively skewed.
The scores for the Kukilmzen Test of Immediste Kecsill are bsed on both time and errors, with the higher scores indiazing the poorer performances. The distributions were good. Attempts to detemine the patient's method on this test were compuratively fruitless Observations of behavior and introspections indicated at least throe gyes of atradk: visas, kiaaeshetic, and verbal. The first two appeared most frequently. Apparently more than one of the three types was ofeen used by the same subject.
The test of Drating a Chair from a model was moderately discriminawise but it is not a tes which adults atempt readily, and a few refused to ty is atall

The adults examined often showed a refuetance to attempt the Good. enorgh Drasing Test alsa. The sores distributed well, but it is highls probsthe that they are not at all eompareble to similar sores obtzined by children.
The Forteus Mfeze Test, unfike the drawing test, was well received by practically alf subjects; it is apparently as interesting to adults as to children . The distributions are shown in Table XIIT. ${ }^{2 *}$

[^41]
COMPARATIVE FINDINGS FOR MEN AND WOMEN

\author{

1. Mean Scores
 2. Variabilitics
}

T. MEAN SCORES

THE group of men, containing 47 cases, is abour twice the size of the group of women, and this proportion usually halds for the scores on any test. The two groups are similar in age and in educational and occupational status. The mean age for the men is 35 years and the mean for the women $3 \$$. Exch group falls at the eighth grade in educational level. The mean occupational rating on the Barr Scale for the men is 8.on, for the women 8.77 . ${ }^{1}$
The most striking fact evident from a comparison of scores for men and women is the claseness of the means for the twa groups on the large ma. jority of tests. As inspection of Table XXII will show, some of the mean scares are practically identicel. The slight dispanties shown on others probably result from fluctuations of sampling. It is notevarthy, however, that the means for the men are superior to thase for the women on all but three of the tests included in the table. None of the differences is satistically significant. Those most nearly approaching significance appear for the Drawing Completion Test of the Pinener Non-Language Scale, the Stanford Binet, the Kuhlmana Immediate Recall, and the Drawing of a Chart, with differences divided by the sigmas of the differences of $2.43,1.72,2.49$, and ${ }^{1}-49$ respectively. It is particularly interesting that no segnuficant sex differences in reeans were found on either verbal or numerical tests, for such dtfferences have often been reported in the literature, especially in studies of children and adolescenss. ${ }^{2}$

[^42]TABLE XXIII
mean scores for the age decade croups and the correlation of each variable with age

	NAE 20-29		AGE 30-39		ACE 40-49		AGE 50-59		CORRELATION wITII AGE
	N	Mean	N	Mcan	N	Mean	N	Mean	
School grade reached	14	9.4	19	7.8	12	7.3	12	$7 \cdot 5$	-. 22
Barr Oocupational Rating . .	12	7.9	21	8.5	54	8.3	13	8.6	+.16
T'csts							-		
Oral Analogies	10	23	9	24	9	18	10	18	$-.37$
Printed Analogits .	14	24	16	23	12	d)	12	18	$-.32$
Completion Beta . . .	14	7.9	15	8.1	12	78	10	7.2	-.19
Stanford Binct Vocabulary .	15	52	21	57	13	56	13°	56	+1.16
Thorndike Word Knowledge	14	53	14	68	12	64	8	73	+ +33
Stanford Binet Scale • *	14	366	20	173	12	160	12	$15 t$	-. 18
Thorndike McCall Reading	13	25	17	26	11	25	11	23	$-. .07$
Gates Oral Spelling St?	13	25	13	29	11	26	10	26	-. 05
Stansord Dictation :	II	85	17	96	13	88	11	97	+.01
Arithmetic Reasoning	13	27	18	27	12	25	7	27	-.05
Mare and Foal	13	23	17	25	10	22	7	22	$-.03$
Seguin . -	9	25	17	30	11	31	7	34	$-.42$
Substitution	9	15	14	15	10	16	7	19	$-.38$
Pintner Non-Language	9 14	91 397	15	100	10	ror	5	169	-. 43
Kuhlmann Immedtate Recall	14	391 175	16	356	10	324	9	280	$-.53$
Porteus Maze	14	175 $7 \sim 8$	11	154	8	169	5	201	-. 25
		${ }^{2}$	10	174	8	162	II	156	-.35

2. Varinbllities

Because of the small groups there is little decisive evidence on the question of differences in variability. The sigmas shown in Table XXII, like the means, are in most cases close. Among the few fairly large differences in absolute variability those appearing for the Substitution, the Kuhlmann Immediate Recall, and the Porteus Maze Test each depend on an extreme ease, but that for the Stanford Dictation Test reffects the more platykurtic

TABLE XXII

MEAN SCORES AND SIGMAS FOR MIALES AND FEMALES

TEST	MEAN		Stcsia	
	Male	Fsmate	stale	Fcmale
Frinted Opposites: Time	71.0	79.6	39.3	230
Orsl Analogies .	20.0	21.2	6.7	6.3
Printed Analogies	21.4	20.3	7.0	6.1
Completion Beta	7.9	7.6	1.3	1.3
Stanford Binet Vocabulary	55.3	52.8	13.1	15.1
Thorndike Word Knowledge	61.5	62.2	$2 \mathrm{t}-4$	20.5
Stanford Binet Seale . .	167.9	155.8	26.0	27.9
Gray Oral Reading, Set IV	72.7	75.6	19.0	23.0
Thorndike McCall Reading	24.9	24.2	4.8	4.4
Chapman Reading-Comprehension	16.8	15.8	6.3	772
Gates Oral Spelling : . :	26.7	25.7	7.3	6.0
Stanford Dictation	91.0	89.8	239	19.5
Writing a Letter	5.1	5.6	1.2	1.0
Arithmetic Computation	26.9	25-3	7.0	74
Arithmetic Reasoning .	23.9	20.5	6.0	6.1
Seguin .	15.3	16.0	4.4	33
Substitution		1147	29.1	63.9
Pintner Non-Language .	3658	337.7	110.7	98.3
Imitation	6.8	55	29	2.2
Hard Learning		327	9.3	10.9
Drawing Completion	14.1	12.0	3.0	32
Reversed Drawing . . -	5.7	5-1	2.0	2.0
Picture Reconstruction	13.3	11.7	$3^{8 .}$	75
Kuldmann Immediace Recall	159.8	195.0	$5^{88} 3$	83.6
Drawing a Chair	16.8	14.0	5.5	4.3
Goodenough Drawing .	28.2	28.2	10.4	11.0
Portetes Maze	1778	$\times 600$	21.5	39.3

distribution of scores for the men as compared with those for the women. Expressed in terms of Pearson's Coefficient of Variation, the relative variabilities for the remaining tests showing large differences in absolute variability are as follows:

Thus it is evident that the men are relatively much more variable than the women in speed on the Prioted Opposites Test, and slightly more variable on the Stanford Dietation Test, while the women are much more variable thao the men on the Pieture Reconstruction Test.
Findings for men and women with regard to inegualities in the performance level in any individual are reported in Chapter VII. For the sake of completeness, it is to be noted here that there is no apprecinble difference between the group of men and the group of women in mean or sigma of the index talien to represent individual inequalities in performance level.
TABLE XXIII

ence of the subjects in the twenties. The close similarity of all four deades from the point of view of educational and ccaupational starus indicates that they may justly be compared for test performances, and that differences in test performances may be auributed to differences in age. ${ }^{3}$

Calculation of the P values for the differences between the mean test scores reporsed in Table XXIII shows no siguifieant differences betwen means at any one-desede or two-deade intervil. For the three-decade interval from twenty to fifty, however, bere is a signifient rise in the cose of the Thorndike Test of Word Knowledge and there are signifieant declines in the case of the Printed Analogits and the Seguin Formboard.
From inspection of Table XXIII it will be crident that, while the differences in means are in most cases comparatively slight, there is a sery interexing division of the teses according to their course with age. All the language sets, with the exeeption of the Printed Analogics, show higher means in the thirie than in the menties; while the non-lengwage ters, with the exeeption of the Kuhlmann Immediate Reenl, show no such rise" Their menns tead rather to dectine stedily from the wratian through the fifies and the Printed Anologies is like the non-langugge test in this respect. The means for the language ters all cerline from the thirties to the forties, but there is not always a further delline from the forties to the fifties, and in the case of the Thomdike Word Knowledge and the Stanford Dictation Tests there are riser from the fortits to the fiftes On the Thorndike Test of Word Knowledge the mean seore in the fifties is higher than that in aov other decade.'

2. Findings for the age groups twenty through thirty-four and

 FORTY-FIYE THROUGH FIFTY-NINEWhen two larger age groups are selected for comparison, the one composed of all subjects aged twenty through thirty-four and the other of all subjects aged forty-five through fifty-nine, the mean score for the older group is significantly lower than that for the younger in the case of four tests: the Printed Analogies, the Seguin, the Substitution, and the Pintner Non-Language. The comparative findings are shown in Table XXIV. In no case is the mean score for the older group significantly higher than that for the younger. On both vocabulary tests, however, the means for the older group are slightly higher than those for the younger, and on four other language tests-the Completion Beta, the Thorndike MeCall Reading, the Gates Oral Spelling, and the Stanford Dictation--and on both arithmetic tests, the means for the older fall only slightly helow those for the younger.

Differences in variability between the younger and older groups are on the whole small. In yo of 17 cases the older group is apparently the more variable. The quartile deviations for the two groups on the tests of the preeeding analysis are as follows:

		Younger group	Older group
Oral Analogies .	-	3.0	6.3
Printed Analogies .		45	5.3
Completion Beta		. 8	1.5
Stanford Binet Vocabulary		7.8	12.8
Thorndike Word Knowledge		15.8	13.0
Stanford Binet . .		128	22.3
Thorndike McCall Reading		4.5	3.3
Gates Oral Spelling	-	$3 \cdot 3$	5.8
Stanford Dictation.		20.1	16.8
Arithmetic Computation		5.5	4.5
Arithanetic Reasoning -		- 5.8	3.8
Mate and Foal . . .		4.3	4.5

Psychol, 1932, 23, 179-586) If the scores from his table are grouped in decade periods, there are 1,030 for ages under twenty, 889 for the twenties, 224 for the thirtics, 71 for the fortics, and io for the fifties The dismbutions seem to indicate ibat dicre were difterent types of samb ple at decades forty and 5ify. Citculation of the mean acores for the three pounger age groups shows them to be 651,712 , and 601 respectively. The differences in mean scote from below thenty to the twentits and from the ewertues to the thaties are both significant, with differences divided by the sigmas of the differences of 74 and 58 Thus Grace's findings show an eatly and significank mse wn werage test score followed by a dedme which is also significant and whieh contes at the twenty-thirty interval.

The problem of age and test performance will be taken up again in Chapter IX, after the correlations with age have been discussed, but in this connection it may be noted, first, that differences in mean score on the test performances analyzed are comparatively slight between the third and the sixth decade. Performances involved in the language tests, with the exception of the analogies, are all relatively well maintained with age. In the case

TABLE XXIV

NEAN SCORES FOR AGES TVENTY THROUGH THIRTY-FOUR AND FORTY-FNE through firty-Nine, And values for the sicnificance of THE DFFFERENCES BETWEEN THE MEANS

	AcE 20-34		AGE 45-59		Pvallozs
	N	Meon	N	Mean	
School grade reached	26	90	22	7.6	. 6.5
Barr Occupational Rating	25	8.4	25	8.7	.6-. 5
Tests					
Oral Analogies	16	22	18	19	.1-.05
Printed Analogies .	24	24	22	28	0-.02
Completion Beta	21	8.0	22	7.5	-3-2
Stanford Binet Vocabulary	28	55	24	56	9-8
Thorndike Word Knowledge	24	59	19	68	--. 1
Stanford Binet Scale . . -	26	172	23	155	.1-.05
Thorndike McCall Reading	25	25	21	24	.6-. 5
Gates Oral Spelling	27	27	19	25	8.7
Stanford Dictation	23	93	22	92	-9-. 8
Arithrnetic Computation		28	17	26	4
Arithmetic Reasoning	24	24	16	22	.8-. 7
Mare and Foal . .	20	26	17	33	. $1-.05$
Seguin -		14	16	18	0-01
Substitution	19	86	14	277	0-.01
Pintner Non-Language	25	3^{87}	18	303	O-.01
Kuhimann Immediate Recall	33	167	13	204	$=-1$
Porteus Maze . . .	17	177	19	158	-

of the vocabulary tests there are even slight increases in the mean scores of the older groups, and on the Thorndike Word Knowledge the mean score for the fifties is significantly higher than that for the twenties. The second important point to be noted is that the most marked changes with increasing age are the declines shown on the analogics and on the non-language tests. On the Printed Analogies and on the Seguin Formboard the decreases in mean score between the twenties and the fifties are significant. When the larger age groups twenty through thirty-four and forty-five chrough fify-nine are compared, there are again signifitant differences in mean score on these tests and in addition significant decreases in mean score on the Substitution and on the Pintner Non-Language Tests. These declines cannot in every case be attributed to the more generally recognized characteristics of bchavior changes with age, for example, to diminishing specd or manual dexterity. Neither of these factors enters into the Printed Analogies Test, for example. It is possible that older persons have increas. ing difficulty with the analoges or the non-language tests because they become less able to adapt to the particular situations involved; it is also possible that the peaks in the development of the performanees involved are sctually reached early in life. In all probability the latter is the better explanation, for observations of the patients and their ready adaptation to most of the test situations in question, as well as the character of some of these situations, would seem to rule out the first posshihity.

VII

THE RELATIONSHIP BETWEEN VARIOUS PERFORMANCE LEVELS IN THE INDIVIDUAL CASE

\author{

1. Method of Analysis
 2. Results
}

I. METHOD OF ANALYSIS

WITH records for each case on a large and varied battery of tests, the material was particularly well suited to a study of the equalities or inequalities in performance levels in the individual. For adults studies of this sort have never been carried far becouse of the brief examinations usually employed. Yet the problems which may be attacked by such an analysis are of great interest. It is important to know how much variation in performance level the individual shows on a variety of tests of intelligence and educational achievement; what the relationship is between this variation and sex, age, education, and the grade of the performance as indieated by test seore; and finally what facts the individual ease records will yield as to characteristic constellations in mental test performance, that is, groupings which appear when certain test seores are high in comparison to other test scores.
To make a survey of different test performanees it is, of course, pecessary to convert the various test seores into measures wbich will be directly comparable. Standard measures were computed from the constants of the distributions of the total populations. ${ }^{1}$ Since the groups were small and the distributions only approximately normal, the technique of using standard measures is not altogether justifiable, but it furnishes a satisfactory indication of the trend of the results. Only tests giving fairly good distributions were considered for the analysis, and from among these ten were chosen which would cover a number of different types of activity: the Kelley Trabue Completion Beta, Seanford Binet Vocabulary, Printed Analogies,

[^43]Thorndike McCall Reading, Gates Oral Spelling, Letters, Arithmetic Computation, Pintner Non-Language, Kuhlmann Immediate Recall, and Porteus Maze Tests.
Twenty of the women, excluding the 3 who took fewest tests, and 20 of the men selected at random were chosen as the first groups. When certain marked differences between the men and the women were found in the correlations between the index of individual variation and other variables, a second group of men was selected, ineluding the 20 of the 27 remaining male subjects who had taken the greatest number of tests. The standard measures for each of the tests seleeted, the mean of these measures, and their average deviation from the mean standard measure were determined for eich individual. This average deviation (A.D.) was taken as a measure of the variations in performance levels in the individual case, and was correlated with mean standard measure, age, and education. When the statistieal analyses had been completed, the individual case records were plotted on graphs showing the relative position of the standard messures for the ten tests analyzed, and these graphs were then compared.

2. RESULTS

The mean standard measures and the means and sigmas of the average deviations for the three groups are as follows:

There is a close correspondenee between the three groups in the means of the average deviations, but the women are relatively low in mean standard measure and the men of the second group relatively high. The men of this Group B are also slightly more vaiable than the subjects of the other groups.

The correlations for each group and for the two groups of men combined are given in Table XXV. For such small numbers the standard errors are, of eourse, high.
According to Fisher's eriterion of the significance of a correlation, only the correlation of -.53 between A.D. and education in Group A, which
has a P value of .02 ，ean be taken to indicate a definite relationship． It seems probable that the higher correlations throughout this group depend on some factor in its sclection．The findings as $\mathbf{2}$ whole indicate that there is little，if any，relationship between inequality in test performance as meas－ ured by average deviation and general level of test performance，age，or education．
Studies of the individual case records are interesting．Thirty－two of the 60 cases analyzed（ 23 of the men and 9 of the women）make standard scores on all tests within plus or minus one sigma of their mean standard measures．In other words，slighty more than balf the group and an almost equivalent proportion of men and women show no great individual varia－ tion in the ten test performances．It must be noted that these include not

TABLE XXV

correlations of the average deviatton of the standard meastres with other varlables

	fexales		ratues	
		Group A	Group ${ }^{\text {B }}$	Croupe 1 and 8
Mean standard measure	－．001 ± 23	－49土． 17	－．04才 23	．25土．15
Age	＋．22 $\pm .21$	＋－34土20	＋．12土23	＋．88土． 55
School grade reached	－．004士．23	$-.53 \pm .16$	－．01土．33	－． 27 土． 25

Norz：Fach correlation is followed by its standard error．
only tests manifesting a fairly high degree of xelationship，as reported in Chapter VIII，but also tests such as the Porteus Maze and the Kuhlmann Immediate Recall which are much less closely related to the majority of the verbal tests．Comparison of these cases with those giving one or more test performances which fall more than one sigma from the mean standard raeasures shows slight differences in age and education；as one would ex－ pect，the subjects with the smaller variations are on the average younger （three years in the case of the men and two in the case of the women）and slightly higher in educational level（half a year for the men and a year for the women）than the subjects with one or more performances deviating be－ yond one sigma from their respective mean standard measures．The situa－

[^44]tion has been suggested by the correlatinns with average deviation reported in Table XXV, but only one of these was found to be significant.
Among the 28 cases whose perfarmances do not fill within plus or minus one sigma of the mean standard measure, Ix deviate more widely than this in only one performanee. These single and relatively large deviations appear more often for the Porteus Maze than for any ocher test (4 cases).
Inspection of the graphs showing the mean standard measures for each case reveals no characteristic constellations among the test performances analyzed. There are a fev cases showing relatively high or relatively low non-language performances, as indicated by the three non-language tests, but for the group at large thete are no elear-cut subdivisions in the pattern of the variations. Nor is there any indication of generally high or generally low performanees on the socalled educational achievement tests in cases in which the edueational level is considerably above or considerably below the average. ${ }^{3}$
The absenee of large deviations in the majority of cases is a demonstration of the fact that adules when do well on some of the tests in question usually dn well on the others, and conversely that those whan have dififieulty with some tests are likely to have diffeulty with others. The firther evidence from the analysis of individual case records shows that particular constellations of abilities, as indicated, for example, by high stores on nonlanguage tests with low scores on language, ase the exception rather than the rule; for the most part, the adult subjects sbow relatively small deviations from their respective mesn standard measures, and these have an irregular character, or at least one whieh cannot be ordered aceording to a logical analysis of the nature of the tests.

[^45]
VIII

CORRELATIONAL FINDINGS

1. Correlations with Age
2. Correlations with Education
3. Correlations with Occupation
a. Chi-Square determinations, Taussig ratings
b. Correlations with Barr Scale ratings
4. Intercorrelations beween the Most Important Tests
a. Correlations with the Stanford Binct Scale
b. Correlations with the Kelley Trabue Completion Exercise Beta
c. Correlations with the Vocabulary Tests
d. Correlations with the Thorndike McCall Reading Scale
c. Correlations with the Gates Oral Spelling and the Stanford Achiev ement Dictation Tests
f. Correlations with the Printed Analogies Test
g. Correlations with the Stanford Achievement Arithmetic Tests
h. Correlations with the Pintner Non.Language Test
i. Correlations with the Goodenough Drawing Test
j. Correlations with the Porteus Maze Test

I. CORRELATIONS WTHA AGE

IN general the correlations between age and non-verbal tests are negative and of relatively high degrec, ranging up to - 53 , while those between age and verbal tests are of relatively low degree, but still negative. As determined by Fisher's criterion, the only reliable positive correlation between age and a verbal test appeared for Uhe Thorndike Word Knowledge. ${ }^{1}$ Reliable negative correlations appeared for the Oral and Printed Analogies, the time score on the Mare and Foal, the Seguin, the Substitution, the Pintner Non-Language, and the Porteus Maze Tests. Correlations between age and thisteen of the more important tests of the battery are presented in Table XXVI.
Apparently the wide range of the group had litule effect on the degree of

[^46]Correlations between education and test ssore were calculated for nine－ teen of the tests of the battery．In all cases the correhations are positive and in all but two cases they are relizble；the two exceptions are those for the Kuhlmann Immediate Recall and the Goodenough Drawing Tests．Thir－ teen of these correlations are given in the second column of Table XXVI．

TABLE XXVII

partial correlations mdicating the relative importance of the FACTORS OF SCHOOL CRADE REACHED AND TEST DNTELLGENCE IN vocabilary ant educatonial achievenent test scores

TEST	cedeation		Stanfoxd minet	
	$\begin{gathered} \text { Firs } \\ \text { order } \end{gathered}$	scrond ordac＊	$\underset{\substack{\text { Frding }}}{\text { or }}$	$\begin{aligned} & \text { Serond } \\ & \text { ordet } \end{aligned}$
Thorndike Word Knonledge	－46さ．11	．12土．14	．6x $\pm .09$	＋S土．12
Gray Oral Reading ．${ }^{\text {a }}$	． $36 \pm .13$	． $18 \pm .14$	． 39 ± 13	2－2才14
Thomdike MeCall Reading	． $63 \pm .08$	． 3^{8} 土．72	．75土．06	．62土．09
Chapman Resding－Compreteasion	． $63 \pm$ ．10	． $36 \pm .14$	． 51	＋6\＃．08
Gates Oral Spelling ．．．．	． $59 \pm .09$	20才．13	． 68 土． 08	．57土．12
Stanford Dictation ．	． $60 \pm .09$	$23 \pm .5$	74土	．57才．r0
Arithmetic Compuravioa	． $67 \pm .08$	＋9	． $67 \pm .08$	$44 \pm .12$
Arithmetic Reasoning－	． $59 \pm .09$	26 ± 13	． $81 \pm .05$	．72土．07

Norx：Each correlation is followed by its standard error．

[^47]The relatively high correlations between scores on the tests and sehool grade reached do not necessarily indicate that suceess in the tests is a func－ tion of education，for education may as well be considered the dependent as the independent variable and some of the variations in test score with education may depend on the relationshup existing between intelligence and the amount of education，If the Stanford Binet score be considered an in－ dex of intelligence，it is possible to determine by the partial correlation technique the degree of relationship between eduention and rest score when the effect upon these of the variztion in intelligence is discounted．It seemed worth while to calculate these partial corrclations for the Thorndike Test of Word Knowledge and for the various educational achierement tests，suc－ cess in all of which might be expected to depend hargely on the annount of

A comparison of these figures with those given above for the variation in test score with education shows that for every test except the Arithmetic Computation, the percentage of variation with the Stanford Binet score is higher than that with the school grade completed. For most of the tests, including the Thorndike Test of Word Knowledge, the Thorndike aod the Chapraao reading comprchension tests, the Stanford Dictation, aod the Arithmetic Reasooing, the differcnces are marked.

3. CORRELATHONS WITH OCCUPATION

a. ChiSgtare determinations, Tatusig ratings

The degree of association between location in the Taussig classification and score on some of the tests was studied by means of the ChiSquare technique. ${ }^{\text {s }}$ Group I, Professional, and Group II, Semi-professional and Business, were conabined for this purpose, as were Groups IV and V, Semiskilled and Unskilled labor. Scores on the rests were thrown into two classifications, above aod below.the mean. The tests used and the P values for the ChiSquare of each are given belov:

[^48]The tesults indicate a division between the verbal and the non-verbal tests; the Printed Analogies falls with the nonverbal group. There is a significant association between Taussig classification and scores on the Completion Beta, the Thorndike McCall Reading, and the Stanford Binet Vocabulary Tests, and probably a significant relation between the Taussig and the Stanford Binet Scale as a white. Among the verbal tests, only the Gates Spelling and the Printed Analngics fail to show a real association with the Taussig classification. Of the nnn-verbal tests, not one is associated with this classification of occupations.

The presence or absence nf association is strikingly evident from the contingency twhles, three of which are reproduced in Table XXVIII.

TABLE XXVIII

COAFNGENCT TARLIS FOR TAUSSIG RATNVS AND YARIOUS TEST SCORES

	InUSSIC GROUPS			
	I and 71	m	JV and V	Toual
Stanford Binet scores below 160	3	6	13	22
Smoford Binet scores above 160. . .	13	6	7	26
Total	16	12	20	48
Completion Bexa sores below 788 . .	1	5	16	22
Completion Beta seares abore 7 Bo o .	12	5	4	21
Total	43	10	20	43
Pintner Nontlanguage scorer below 350	6	5	10	21
Pintner Non-Language seores above 350	7	6	7	20
Total	13	$t 2$	$r 7$	41

b. Correlctions with Barr Scale ratings

The correlation between Barr ratings and age is $+.16 \pm .13$, and that between Barr ratings and education $+48 \pm . r 1$. The latter is reliable.

Correlations with Barr ratings were corrputed for one or more of the tests in each group, vocabulary, reading, and so on. They are all positive and range from $0 \% \pm .44$ with the Completion Beta to $.6 \mathrm{x} \pm 09$ with the Stanford Arithmetic Reasorug. It is interestung to find that the next to the lowest of those correlations calculated is +.12 \#. 16 with the Porteus Maze Test. Thirteen of the correlations with Barr Scale matings are presented in the third column of Table XXVI.

Of the 666 intercorrelations possible for the 37 tests reported in this monograph, 172 were calculated. In addition to the intercorrelations of the most important tests of the battery, this aumber included eorrelations calculated for some particular purpose, for example, to find the degree of correspondence between oral and printed farms of a test, or to determine the interrelationship of sub-tests in a scale. ${ }^{6}$ Fnr cconomy in presentation only the intercorrelations of the most important tests will be reported. These are shown in Table XXIX. The first eight tests would generally be eonsidered predominantly verbal, and their intercorrelations are relatively high. It is to be noted, howvever, that the correlations with the Printed Analogies are eonsiderably lower than those with the other tests of this group. They are lower than the corrclations between the language and the arithmecic tests, though higher than the correlations between the language and the nonlanguage tests.

2. Correlations with the Stanford Bines Scale

Reference to Table XXIX will show that the Stanford Binst, the composite test of so-called geaeral intelligence, does indeed show the highert inter-test correlations, on the average, of any test reponed. ${ }^{\text {. The conch. }}$ tions with the Printed Analogies and twe wo arithmeric tests are about as high as those with tests of the language block. The scatter diagrarn for the eorrclation between the Stanford Binct and the Printed Analogies Tests, which is presented in Figure r, shows the relationship to be fairly close; most nf the scores cluster near the regression line. The same clustering is apparent in the diagram for the Stanford Binet correlation with the Arithmetic Compuration, and to an even greater extent in that for the corrclation with the Arithmetie Reasoning Test. The correlation between the Stanford Binet and the Puntner Non-Language Test, $+69 \pm 07$, is high in comparison to the findings of other zuthors on children. Morganthau reported a

[^49]correlation of $+.44 \pm .06$ for 97 children, aged ten to sixteen. The difference might result from the wider range in the adult group, but this explanation seems unlkely in view of the fact that the Stanford Binct shows a low negative relation to age and the Pintrer Non-Language Test a fairly high

Figure r. Correlation between the Stanford Binet and the Panted Analogies Tests:

$$
x=+72 ; b=+20^{\circ}
$$

${ }^{5}$ D. Morganthau, Some Well-Known Mental Tests Evalwated and Compared, Arch, Psychol, 1922, 7, No. 52, 38

Waters found an cven lower correlation, +13 , for a group of 165 chuldren in grades VI B and VII A. The Stanford Binct corrclanons with the sub-rests of the Pinener Non Language were -.04 whth Imicatens, - II with Hard Learning, +33 with Drawiag Completion, +. 32 with Reversed Drapung, and +.36 with Puture Reconstruction It is to be noted, how. ever, that while neasiy all of these chuldzen were born in the United States, more than two. thirds of them came from famulies of forengn extraction, so that there may have been in. tquatitics in faculty with the Eaghsh language (F C Walters, A Statistical Sudy of Certan Aspects of the Time Factor in Inteligerce, Teach Coll. Concrs. to Educ, 192\%, No. 248, 34-35.)
negative relation. It is impossible to check by partialing because of the curvilincar relationship between age and Stanford Binet seore.
The correlation between the Stanford Binct and the Goodenough Test of Drawing a Man, on the contraxy, is much lower than that usually found for

Figure 1. Correlation between the Stanford Binet and the Goodenough Dawing Tests: $\mathrm{r}=+\cdot 39 ; \mathbf{b}=+.87$
ehildren. It is 17 to 46 points lower than the correlations reported by Goodenough for children aged four to ten. ${ }^{2}$ The seatter diagram, reproduced in Figure 3 , shows how slight the relationship between the two test performances is at the adult level.

The correlation between the Stanford Binet and the Porteus Maze Test, $+.59 \pm .10$, is about the same or slightly lower than the correlation reported by other authors for children. Morganthou found a correlation of
P. L. Goodenough, Dleastrometh of Intellygeace by Drawings, \$1.
$+54 \pm .05$ for her mo boys and girls; ${ }^{10}$ Gav a correlation with Stanford Binet I.Q. of +52 for 5^{2} boys and one $\mathrm{nf}+29$ for 4^{8} girls; ${ }^{11}$ and Worthington a correlation of $+75^{12}$
The seatter diagram for the 43 adults shows a rather extensive spread around the regression line, with some fanning above a score of about 144 on each test. The cases are too few to make a definite conclusion possible, but the tendency is in line with the statenents Porteus has made about the closer correspondence of Stanford Binet and Porteus scores in the case of low-grade than of high-grade subjects. ${ }^{13}$
-
In view of the fact that some of the tests in this research were more satisfactory than the Stanford Binct for the adult group from the point of view of their acceptability to the subject and their discriminative value, several batteries requiring about as much time as the Binet were set up and multiple correlations caleulated. The groups are, of course, too strall for the results to be more than suggestive. One battery contained three tests which were cach satisfactory individually: the Printed Analogies (X_{3}), the Completion Bcta (X_{3}), and the Thorndike Word Knowledge (X_{t}). The findings for the battery were:

```
\(\mathrm{R}_{1234}=+.860\)
\(\mathrm{X}_{1}=1.32 \mathrm{X}_{8}+7.83 \mathrm{X}_{8}+.33 \mathrm{X}_{4}+57.14\)
\(\sigma_{124}=11.73\)
```

The amount of variation in Stanford Binet seore resulting from variation in the other three tests was 49 per cent.
Since a dose relationship with the subject is valuable in many cases, either because it affords an opportunity for study of his reactions or because it ensures berter cooperation, an oral battery was uried. The tests included were the Stanford Binet Vocabulary (X_{2}), the Oral Analogies (X_{2}), and the Oral Absurdities (X_{1}). The findings were as follows:

```
\(\mathrm{R}_{123}=+.9 \mathrm{~m}_{4}\)
\(\mathrm{X}_{1}=8.08 \mathrm{X}_{2}+.94 \mathrm{X}_{3}+3.18 \mathrm{X}_{4}+34\)
\(\sigma_{1254}=12.3^{8}\)
```

Sixty-two per sent of the variation in Stanford Binet score resulted from variation in the three rests of the batcery.
As a criterion against which to check outher tests or batteries of tests, the Sanfond bivet is fat from perfect. The difivalies are particularly setous ia wash

[^50]with adults. It is probable that sorne of the sub-tests show improvement with increasing age after maturity while others show little change and still others deeline. If so, the same total score would not have the same significance at different ages. This difficulty is, of course, present in any composite score for a battery of tests such as those discussed above, and for this reason, whenever the battery is not homogeneous, it is undoubtedly better to report the test results separately than to employ a composite score.

Figure 3. Corxelation between the Kelley Trabue Completion Beta and the Pintuer Non-Language Tests: $\mathrm{r}=+.56 ; b=+.007$

With results for the three tests reported separately, it is probable that the first battery would make a satisfactory brief examination of intelligence. The Compietion Beta is the most valuable language test of the battery as a whole: it interests adult subjects and it has more discriminative power at the upper levels than any other. The Thorndike Test of Word Knowledge is discriminative for adults from the middle levels of the population and, while it probably includes a certain number of doubtril jtems, it is on the whole a good test. In relation to these two, both of which demand activities generally considered as excellent indices of verbal inteliligence, the Printed Analogies is more or less an unknown
quantity. It probably introduces fartors not present in the other test pefformances, but the nature of these factors cannot as yct be defined.
For old or uncooperative subjects or any others requiring individual work, the oral battery would probably be usefall. It would undoubtedly be improved greatly, however, by an extended Oral Absurdtitics Test. All three tests of this batcery are easily administered and well received, and in cases showing resistance to an intelligence test the battery may be introduced as a language test.

b. Correlations with the Kelley Trabue Completion Exercise Beta

The correlations between the Completion Beta and the language tests, including the Printed Analogies, are fairly high. ${ }^{14}$ Those with the arithmetic ests are also fairly high. The relationships shown by the seater diagrams are consistent throughout the ranges. All nine of these correlations are reliable.
The correlation of $+.56 \pm .10$ with the Pintner Non-Language Test is also reliable. ${ }^{15}$ The seatter diagram, which is shown in Figure 3, brings out an interesting situation: the relationship is more marked when the Completion Beta seore is over 6.50; lower Beta scores may be associated with high scores on the Non-Language Test.
In view of the relatively high correlation which both the Completion Beta and the Porteus Maze show with the Stanford Binet, and also with the Printed Analogies Test, the Beta-Porteus eorrelation of only $+.10 \pm .16$ is of eonsiderable interest. It is not easily interpreted. The diagram, presented in Figure 4, shows a diffuse rectilinear seatter, making the lack of relationship between the two variables quite apparent.

c. Correlations wish the Vocabrlary Tests

The first six correlations with each of the vocabulary tests are reliable and fairly high. ${ }^{18}$ The correlation of $+.88 \pm .03$ between the Stanford Binet Vocabulary and the Thonndike Test of Word Knowiedge is the second highest in the table.
The eorrelation between the Stanford Binet Vocabulary and the Printed

[^51]

Figure 4. Correlation between the Kelley Trabue Completion Beta and the Porteus Maze Tests:

$$
s=+.10 ; b=+.004
$$

Figure 5. Correlation berween the Thoradike Mccall Reading Scale and whe Arithmetic Computation Test:

$$
x=+.66 ; b=+-43
$$

Analogies Test is moderately high, hut the diagram shows a wide seatter from the regression line. The diagram for the surprisingly low correlation of $+.31 \pm . r_{3}$ between the Thorndike Word Knowledge and this Analogies Test reveals a eurious seatter, with a fairly close clustering of the scores around the regression line below a score of 50 on the Word Knowiedge Test, and an increasing fanning of the scorcs above that (see Figure 6).
Correlations with the arithmetic tests are lower than with the first six language tests of the table, but they are reliable. The diagrams show fairly wide general seatters from the regression line, except in the ease of that for the correlation of the Word Knowledge and Arithmetie Computation Tests where the relationship is relatively close at the lower end of the scales.
The diagrams for the remaining correlations with the vocabulary tests show no peculiarities.

d. Correlations with the Thorndike MeCall Reading Scule

All twelve of the correlations caleulated betwees the Thorndike MeCall Scale and other language tests are reliable, the highest being the correlation of $+.83 \pm .04$ with the Completion Beta. ${ }^{17}$ The seatter diagrams for the correlations of +.66 with each of the arithmetic tests are similar. That for the Arithmetic Computation is reproduced in Figure 5 to show how elosely most of the cases eluster around the regression line; yet paragraph reading and arithmetie computation would hardly be said, on superficial analysis at least, to have a great deal in common. ${ }^{18}$
In the case of the other tests correlated with the Thorndike McCall the scatters are fairly wide and without pattern.
e. Correlations with the Gates Oral Spelling and the Stanford Achievement Dictation Tests
The eorrelation of $+.90 \pm .03$ between the Gates Oral Spelling and the Stanford Dictation is the highest inter-test correlation found. In general, the series of correlations with the two tests are smimar, but in the case of the language tests, with the exception of the analogres, and in the case of

[^52]the arithmetic tests, the relationships to the Stanford Dictation are closer than those to the Oral Spelling.
The scatter diagrams show nothing unusual, except in the case of that for the correlation between the Gates Spelling and the Pintner Non-Language, where the relationship is closer above a score of 20 on the former.

Figure 6. Correlation between the Printed Analogies Test and the Thorndike Test of Word Knowledge: $r=+.31 ; b=+.80$

f. Correlations winh the Prined Analogies Test

The highest correlations found for the Printed Analogies are with the Stanford Binct Scale and the two arithmetic tests. ${ }^{19}$
There is a large difference between the degree of relationship shown for the Printed Analogies and the Stanford Binet Vocabulary and that shown for the Printed Analogies and the Thorndike Test of Word Knowledge, the former being ${ }^{21}$ points higher than the latter. The seater about the re-

[^53]

Figure 7. Correlation between the Priated Aralogies and the Arithmetic Computation Tests: $r=+.67 ; \mathrm{b}=+.62$

Figure 8. Correlatoon between the Printed Analogies and the Pintner Non-Language Tests: $\mathbf{r}=+.55 ; \mathbf{b}=+.03$
gression lines is wide in both instances, but it is narrower at the lower levels in the diagram for the correlation between the Printed Analogies and Word Knowledge Tests (Figure 6).
It is interesting to find that the Printed Analogies Test correlates fairly highly with the two arithmeric tests. The seatter diagrams both show closer

Figure 9. Correlation between the Printed Analogies and the Forteus Maze Tests: $\mathrm{r}=+62 ; b=+.14$
relationship above the means; that for the Printed Analogies and the Arithmetic Computation is reproduced in Figure 7 .

The correlation of $+.55 \pm .10$ with the Pintner Non-Language Test is higher than most of the other correlations with this test. The diagram, presented in Figure 8, shows an unusual triangular distribution of scores with the apex in the lower left cormer.

The correlation between the Printed Analogies and the Porteus Maze is one of the most interesting in the table. With the exception of one slightly aberrant case, the scores cluster fairly closely around the regression line throughout the entire range, and the diagram, which is repro-
duced in Figure 9，resembles that for Printed Analogies and the Completion Beta．The correlation is higher than those with most of the language tests； and this fact together with the high correlations with the arithmetic tests and the Pintner Non－Language certainly suggests the presence of a non－ verbal factor in this test．

TABLE XXX

CORRELATIONS WITH AGE AND INTER－TEST CORRELATIONS OF THE SCORES OF SUU－TESTS OF THE PINTNER NON－LANGUAGE（ 56 CASES）

	IAttration	ILARD cearntinc	Drawino COMPLE－ TION	REvERSED DREWINE	Ptcture reCON： STRUCTION
INZER－TEST COKRELATIONI					
Imitation Hard Learning Drawisg Complecion Reversed Drawing		$+.67 \pm .07$	＋699	＋．66土．08	＋．56
			＋．55＝09	＋534．10	$+39=12$
				$+.57 \pm .09$	＋60土．09
					＋．47土．10
INTEE－TEST PAZTIAL CORRELATION：（AEL OUT）					
Imitation：		＋．53土．10	$+60 \pm 09$	$+.58 \pm 09$	＋．53土．10
Hard Learning			$+54 \pm .09$	$+45=111$	$+.38 \pm .2$
Drawing Completion				$+.53 \pm .10$	$+.57 \pm 10$
Reversed Druwing					＋48士 18

Nore：Exch correlation is followed by its standard errot．

g．Correlations with the Stanford Achevement Arithmetic Tests

Inspection of the columns of correlation coefficients for the two arith－ metic tests in Table XXIX shows that the Aruthmetic Computation bears about the same degree of relauonship to most of the other tests of the series，verbal as well as non－verbal，as the Arithmetic Reasoning．The only two exceptions are the correlations with the Stanford Binet and Pintner Non－Language Tests．With the Stanford Binct the Aruhmeric Reasoning gives a higher eorrelation than the Computation，and with the Pintner Non－ Langunge Test the situation is reversed．The scatter diagrams for the corre－ lations between the two arithmette tests and the Stanford Buet show simi－ lar distributions of the scores，but a closer clustering around the regression line in the case of the correlation with Arithmetic Reasoning．The scatter diagram for the correlation of $+65 \pm .08$ between the Arithmetic Com－
putation and the Pintner Non-Language Tests shows a wide spread around the regression line and it is evident that the relationship is not close.

h. Correlations with the Pintner Non-Language Test

In general the corrclations with the Pintner Non-Language Test assume an intermediate position; they are, on one hand, lower than most of the correlations with language tests, including the analogies, or with the arithmetic tests; and, on the other hand, higher than the corrclarions with the remaining non-verbal tests. All but one of the correlations with the Pintner Non-Language Test are significant, the exception being that for the Thorndike Word Knowledge.

The two highest eorrelations in the group are with the Stanford Binct and Arithmetic Computation Tests; the next highest with the Portews Maze, ${ }^{30}$ the Completion Beta, and the Printed Analogies. The remaining correlations indicate only slight positive relationsbips between the variables; the seatter diagrams are all more or less diffuse.
Intercorrelations of the Pintner Non-Language sub-tests, with the omission of Sub-test 2, the Easy Learning, may be read from Table XXX." They range from +69 for Imitation and Drawing Completion to +.39 for Hard Learning and Picture Reconstruction. These correlations are much bigher than those reported by Morganthau on children of ten to sixteen years: ${ }^{\text {a }}$ When those for Sub-test 2 are omitted, the correlations obtuined by this author range from +0 for Reversed Drawing and Drawing Completion to +46 for Reversed Drawing and Picture Reconstrution. It seemed postible thar these correlations resulted in parr from the larger agt range among the adults. With age partialed out, however, the second order correlations, which are shown in the Ginal section of Table XXX, are suill higher than those reported by Morganthau.

i. Correlations wish the Goodenough Drauing Test

The correlations with the Goodenough Drawing Test are almost all low. Only chree were of a degree higher dhan might have bern obsained by

[^54]chance: those with the Pintner Non-Language, the Stanford Binct, and the Thorndike McCall Reading Scale. ${ }^{23}$ The diagrams are all similar, with a diffuse scatter around the regression line throughout the entire range.

j. Correlations with the Porteus Maze Test

From the point of view of the correlational analysis, the Porteus Maze Test was one of the most interesting. The relationships indicated by the coefficients of correlation are puzzling. Four of these coefficients are reliable: the highest is $+62 \pm .10$ with the Printed Analogies, and the two closely following are $+.59 \pm .10$ with the Stanford Binet and $+.58 \pm .11$ with the Pintner Non.Language Test; the fourth reliable correlation is that of $4^{15} \pm .44$ with the Gates Oral Spelling Test. The very low correlation with the Completion Beta has alresdy been noted (see Figure 4). There is a slight but unreliable negative correlation with the Thorndike Test of Word Knowledge.

[^55]
IX

SURVEY OF THE FINDINGS AND THEIR SIGNIFICANCE

1. Adult Performance Levels
2. Comparative Findings for Men and Women
3. Age and Test Performance
4. Relationships between Various Performanee Levels in the Individual Case
5. Education and Test Performance
6. Occupation and Test Performance
7. Relationships between Various Test Performances

1. ADULT PERFORMANCE LEVELS

THE scores reported in Table XI are too few in number to establish standards for the various test performances, but they are probably good indications of the standards for the middle levels of the adult urban population. The facts which justify this statement are the charaeteristics of the sample in relatioo to data from the 1930 census report and from the resuits of the Army testing, and also the consistency shown in the findings themselves. As reported in Chapter II, tbere is a elose correspondence between the Philadelphia populatioo and the test group with regard to the proportions io different types of occupation. On the questioo of the educational and occupational levels of the test group, aod iodirectly of its intellectual status, the Army findings offer more direct evideore. The mean school grade reached by the males of the test group is 8.0 and that reached by the white draft in the Army 6.9. It has heen noted that this difference prohably reflects changing conditions in education rather than a definite superiority in the test group. In terms of occupational rating on the Barr Scale there is a very close corrcspondence: the mean for the males of the test group is 8 .o and that for the group of occupations for which the median Army Alpha scores was nearest the mean score for the total draft is 8.s.
Interesting evidence of the consistency of the results wbich bas not yet been presented is to be found in comparisons of the mean scores for the three separate hospital groups. It is known that these differ slightly in the educational and occupational status of their ward patients and that a ranking on either of these criteria would place the Orthopedic Hospital first,
the Graduate second, and the Philadelphia General third. Consequently, it would be expected that if the samples at the separate hospitals were adequare to give trustworthy results, the mean test scores would indicate the same ranking. Analysis shows that they do; mean scores for all but three

TABLE XXXI

MEAN SCORES ON THE MOST MMPGRTANT TESTS FOR PATTENTS DISTRERUEED BY HOSPTIAL SOTRCE

	PHILADELPHKA CEMEAAL hospital		CBADUATE hosplyal		ORT却OEDIC HOSpITAL	
	N	Score	N	score	N	Smare
Sunford Binet Scale	20	157.8	+3	154.5	32	17100
Completion Betz	16	72	13	7.5	28	8.3
Stinford Binet Vocobulary	22	52.2	15	51.5	32	574
Thorndike Word Knowledge	14	56.4	12	574	28	66.3
Thorndike McCall Reading	17	23.8	12	248	30	25.1
Chapman Reodisg-Comprehension	15	153	11	15.6	16	18.0
Gray Oral Reading	12	80.3	11	78.1	26	68.9
Gates Oral Spelting . .	15	22.1	13	25.1	25	29.0
Stanford Dictation .	18	$82-4$	14	84,3	26	99.6
Oral Analogies	18	18.7	13	23.9	10	22.0
Printed Analogies . . .		194	3	20.1	27	227
Arithmetic Computerion	16	24.6	11	26.4	28	2\%.5
Arithmetic Reasoning .	15	215	If	± 24	28	23.7
Pintret Non-Kanguage .	18	327.1	II	$368+$	27	371.1
Kuhlmann Immediate Recall	8	201.9	11	172.9	± 5	163.8
Goodenough Drawing	16	35.1	12	25.2	25	31.6
Porteus Maze	13	16 ± 3	12	171°	15	174.4

tests are highest at the Orthopedic, second highest at the Graduate, and lowest at the Philadelphia General. As shown in Table XXXI, two of these three exceptions are for the Stanford Binet Scale and the Stanford Binet Vocabulary, on each of which the Philadelphaa Genera! group slightly excels that at the Graduate, and the third is for the Oral Analogies, on which the groups at the Graduate and Orthopedie make the same mean scores. The remarkable consisteney which this analysis reveals would not be sur. prising if the three groups were far apart, but they are not; the mean
ten years. The Completion Beta is the nnly test showing an average score much above fourteen, but there are a number showing average scores which fall below thirtecn, notably the Pintner Non-Language (12-6), the Kuhlmann Immediate Recall (between 12 and 13), the Substitution (12-0), the Arithmetic Computation ($\mathrm{II}-\mathrm{tI}$), and the Seguin ($\mathrm{II}-\mathrm{O}$). Incidentally it is interesting to note that one of the tests in this low-mental-age group is the arithmetic computation, and the other tests all non-verbal. In short, there is definite evidence that scores for adults on a test which includes different types of performance or eomposite scores on a variety of tests ean never be justiy expressed in terms of mental or educational ages for children; furthermore, even when the comparison is lemited to one particular performance for which standards have been determined on a large and unselected group of children, scores for the adult in terms of mental ages are still misleading beeause they imply a qualitative similarity in performances which are simply rated as equivalent numerically.
Another confusion which the mentalage method of expressing test results is likely to introduce is that between the average level for a group of adults of a wide age range and the age at which the highest average seore is reached. Beenuse the average scores for the adults of this group with ages up to sixty were equivaleat to fifteen years and four months on the Completion Beta and twelve years and six months on the Pintner Non-Language Test, for example, it is not to be supposed that the peak of development is reached a little after fifteen on the former and between twelve and thisteen on the latter. The Completion Beta showed a correlation of only -. $19 \pm .13$ with age, the Pintner Non-Language a correlation of $-.53 \pm .10$. In general, the larger the number of older subjects in any group examined, the lower the average score and the mentalage equivalent on either test. The larger proportion of older subjects, however, would bring the greater reduction in the case of the Pintner Non-Language, though the peak of development on this test might come at fifteen, twenty, or even later.
A further point which must be noted is that the tests differ greatly in discriminative power for adults. In reportang the findings it was stated that certain of the tests were decidedly madequare in this regard, notably the Morrison McCall Spelling Scale and a number of the non-languase teststhe Easy Leaning, the Two Figure and the Casuss Formboards, the Ship

[^56]Test, and the Healy Picture Completion II. Even among the other tests of the hatery there are differenees in discriminative value. In many cases, of course, a piling up of scores at the upper end of the scil: means simply that the test is too casy for adults. This situation is particularly obvious in the case of the performance terts. The problems they present are so easy that the scores for many adults muse come close to the physiological speed limit for the activiries involved. For other types of test different explanations for the negatively skewed distributions may well be aecessery. It has beca suggested that spelling is an activity which the majority of adults, including those af only moderate educatimn and ahility, have fairly well in command and that an process of inereasing the difisculty of a test, short of introdueing catch words, would yield anything but acguively skewed distributions. Spelling or any ochor activity which shows negatively skewed distributions may be studied at adult levels for a knowledge of the particular performance, hut for a study of mental growth or individual diferenes between adults the more satisfactory indices are, of course, the tests with the higher discriminative value. The choice amoog these tests is a further problen, the solution of which will depend on the specific purposes of the study; in some eases it may be desimhle to test performances like those tested by the Printed Analogies which show a definite dedine in arerage seceres after exrly maturity; in other cases it may be better to test performanees such 25 rocihulary which are relatively well maintrined through the adult years, and ineidentully it may be semarked that there are probably many other performances of this type for which satisfactory teats have yet to be devised

2 comparatine findic for mev and wones

In studying sex difierences the small size of the group was a disadvantage, for comparisons had to be made between all males and all females rather than between the groups at short age priods. The diversivy of the tests on which data had been obrained was valuable, however, since it permitted comparisons on many performantes for which sex defferences are in dispute
Analysis of the matcrial not only fills to indicate male superiority on numerical or spatial tests and female supariority na verbal or "memory" texts, but shows no significant ser dififirences for any of the tets of the batrery. In most cases mean scores for the twe sexes,are very close, but it is noteworthy that the men are slightlj superior to the women on all but three of
the important tesis. Comparisons of sigmas reveal no general differences in variability in the two groups.

In the relatively small size of the differenees the results are on the whole in aceord with recent work, which has indicated that sex differences are less marked at adult than as ehildhood and adolescent levels. Most of the studies of adults, however, have shown greater differences between men and women than were evident in this research.

3. Age and test performance

Two approaches to the important problem of age and test performance have been made: the comparison of mean test scores for different age groups and the eorrelations of the various tests with age. The findings indicate that differences in age from twenty $t 0$ sixty have eomparatively little effect on most test scores. For the small decade groups there are no signifieant differenees between mean scores at any one-decade interval or ar any two-decade interval, and the majority of the tests show only slight and insignificant correlations, usually negative, with age. It would not be adequate 10 eonelude, however, that the adult at any age from twenty to sixty stood an equally good ehance of making the same score on any of the tests of the battery. Certain tests show signifiennt differences in mean seore between the twenties and the fifies, and others show signifieant differenees between the larger age groups twenty through thisty-four and forty-five through fifty-nine. In general, the evidences of an inctease in score with age appear only for the rocabulary tests, notably the Thorndike Word Knowledge, while the evidences of a decrease with age are most marked in the case of the analogies and the non-language tests. The Thorndahe Word Knowl. edge is the only test showing a reliable positive correlation with age; both analogies tests, the Mare and Foal, the Seguin, the Substitution, the Pintner Non-Language, and the Porteus Maze show relable negative correlations with age.
That high points in development apparendy oceur at different ages and that the course with age vartes in different test performances are conditions of great importance. The fact that scores on most of the language tests, and also on the arithmetie tests, are well maintained in the thirties suggests that development in these fieds continues not only beyond fourteen, sixteen, or twenty, but that it may still be evident up to thirty or beyond. It is to be noted, however, that while the means for the small decade groups were
higher in the thirties than in the twenties in the case of nine of the cleven language or arithmetic tests, the peaks of development for the much larger groups studied by Willoughby and by Jones and Conrad almost all fell in the twenties or before.
The vocabulary, reading, spelling, and arithmeric tests, on which the scores are not only relatively high in the thirries but remain relatively bigh at later ages, may be said to involve activities fairly well within the experience of the older as well as the younger adule. It seems natwal that rocabulary should be well maintained and should even improve with age. Interestingly enough, arithmeric computation, which apparently depends to a considerable degree on school training, also remains on a rather even level between the twenties and the fifties. There is obvious truth in the suggestion that these performances are all well maintained in adult years because they are within the natural realm of experience for the older person, but the possibility that they involve abilities which mature late or derline slowly must not be overloosed.
The early peaks followed by steady and rather rapid de-line whicb appeas for the analogies and non-language tests, must also depend on sereral factors. It has long been beliered that motor skills requiring rapid movements were best accomplished by the younger person, and reeent investigators hare contributed more precise information on this point. Miles has shown that motor and perceprual abilities, especially those which depend on speed rather than diligence, manifest a steady decline after early maturity, 기though the declines are not so sharp as thase for certain sensory capacities and memory and learning abilities. ${ }^{4}$ The findings for the patients in this research on the Seguist, the Substitution, the Hard Learniag, and the Mare and Foal may be considered as supporting the eridence of a steady drop in relatively simple activities where perceptual and motor abilties and speed are at a prenium.

The findings, however, like those of Willoughby and Jones and Conrad, also show steady and rather marked declines in complex non-language tests, in which speed and skill in certain relatively sirople motor and perceptual ahilities are not so important, and also in the analogies rests. ${ }^{3}$ The drop on

[^57]ecrtain of the sub tests of the Pintner Non-Language probably could not be explained on the basis of decreasing speed or facility in simple motor or perceptual operations. The decline on the amilogies tests could not be attributed to any secondary fictor, sueh as decreasing speed or visual efficiency or failure to adape to a difficult situation. For none of these tests have the performances been sufficiently well analyzed to provide an explanation, although the possibility of a spatial factor immediately comes to mind. In this research the Printed Analogies repeatedly showed characteristics of some of the non-language tests, or elose relationship to them, but it was not possible to determine whether these could well be accounted for by the assumption of a spatial factor. The problem is of eonsiderable importance and one which requires further work on the characteristics of normal mental functioning before the many recent studies of pathologieal disturbances in "spatial thinking" ean be rightly interpreted.
In a cross-section study of this sort it is, of eourse, impossible to determine whether the more intelligent man continues to develop longer than the less intelligent; the only statements whieh can be made are for the general tendencies of average or near-average individuals at different ages. On the whole, it is elear that the greatest development in "test intelligenee" oeeurs before the age of twenty, and that the gains or losses which appear from that age to sixty are comparatively very slighe. They do oceur, however, and the losses in some activities, notably in the non-language field, are of sufficient magnitude to require the establshment of "normal" levels for different age groups in the adult years.

4. RERATIONSHIPS BETWEEN VARIOUS PERFORMANCE LEVELS IN THE

 INDIVIDUAL, CASEThe extent of the test battery made it possible to study the relationships between a large number of performance levels in each individual case-a

Itween age and scose on the Ons Test, but that adaptability to new situanons (Marsh, op. at. 5 (in), 2f determued by score on a number of performance tests, shaws only 2 shight tendency to decrease wath age. Apparently, then, it is safe to assume that dechanes on anon language tests, such as were found in this xesearch, depended on ancreasing age rather than on a progressively poorer adaptation among the older suljects Certanify obscrvations of the patients* reactions would support such a condusion In view of the conssiderable diop with age in the understanding of oral durections, howerer, it as appareat dhat age eurves for tests requiring complex orat directoons must be suterpreted wath caution, and particularly in the case of grade-school subjects, wha showed a more marked declune than college subjects in the Stanford Study.
been regarded as one of the best indices of intelligence. Nevertheless, the extent to which success on this vocabulary test apparently reflects a man's intelligence rather than his education is surprising; only 8 per cent of the variation in scores results from the variation of education while 124 per cent results from the variation of test intelligence.
Among tests of specifie school subjects, the reading comprehension and the arithmetic reasoning tests might also be expected to show a closer rela-

Figure ro. Relations between edocational and various test levels. One case at thitd grade level and two at fifth
tion to intelligence than to education, for while they demand particular skills learned in school, they also demand complex mental functioning which characterizes the intelligent person and cannot be insulled into the dull. The results confirm this supposition, and show that the performances required by the reading comprehension and the arithmetic reasoning tests are indeed more closely related to test intelligence than to education.

The activities involved in the other educatoonal achievements analyzedoral reading, spelling, and arithmetic computation-would generally he considered more elosely dependent on school training. The most striking fact of the analysis is that the spelling tests, the Gates Oral Spelling and the

Stanford Dictation, are more closely related to test intelligence than to education, ${ }^{\text {, }}$ while the Gray Oral Reading shows little difference one way or the other, and only the Arithmetic Computation reveals a slightly closer relation to education than to intelligence. The evidence that the school grade reached is a comparatively unimportant factor for success in spelling

Figure in. Relations between educational and various test levels. Four cases at sixth grade level and one at seventh
is clear: with Stanford Binet scores partialed out, correlations for the two spelling tests with education are reduced from +.59 and +.60 to +.20 and +.23 ; with education partialed out, correlations with Stanford Binet are reduced only from +.68 and +.74 to +.46 and +.57 .
The correlational findings were extremely interesting, but the groups on which the partial correlations had been calculated were so small that it
${ }^{6}$ It is worth noting in this connection that neither spelling nor writing to dictation are component parts of the Suaford Binet Scale as vocabulary and rrading comprehension are.
seemed worth while to make an analysis of the relation between education and test performance in the individual cascs. Seven tests were selected as a basis for the study: the Pintner Non-Language, the Stanford Binet, the Thorndike Word Knowledge, the Stanford Dictation, the Thorndike McCall Reading, and the Stanford Arithmetic Computation and Reason-

Figure 72. Relations between educanonal and various test levels. Five cases at eighth grade level
ing Tests. For each of the 35 subjects who had taken all of these, the sigma deviation of each score from the mean for the total group was determined and the individual case records were plotted on graphs such as those shown in Figures no to 14 . Sixteen cases showed a difference of less than .3 sigma ${ }^{7}$ between the deviation from the mean in educational level and in Stanford Binct score, and for simplicity in presentation these have becn ominted from the final graphs. The remaining 19 subjects, with differences of 3

[^58]sigma or more between the levels in education and in Stanford Binet, are the interesting cases from the point of view of the relationship between education and test performance. ${ }^{8}$ Nine of them made Stanford Binet scores -3 sigma or more above their respective educational levels, while the other 10 made seores 3 sigma or more below.

Figure 13. Relations between edecational and various test levels. One case at sinth grade level and two at twelfth

A study of the graphs will show that the individual case lines follow the level set by the Stanford Binet score far more often than the level set by the school grade completed. Among the 9 cases with Stanford Binet scores which are bigh in relation to the educational levels, 5 or possibly 6 sbow test performances on the Thorndike Word Knowledge, the Sunford Dietation, the Arithmetic Reasoning, the Thorndlke McCall Reading, and the

[^59]Arithmetic Computation which are closer to the Stanford Binet than to the educational level., These are cases a in Figure $\mathbf{1 0}, a, b$, and c in Figure 11, and a and possibly b in Figure $\mathbf{1 2}$. These subjects were apparently able to compensate for a relatively poorer education than their intelligence probably warranted. Cases b in Figure $10, d$ in Figure ir, and a in Figure

Figure i4. Relations between educational and various test levels. Two cases with equivalent of fourteen years' schooling and one with equivalent of sixteen

13, on the contrary, each with the Stanford Binet slightly higher than the educational level, not only failed to bring up ocher test scores to match the

[^60]Stanford Binet, but for the most part ohtained scores relatively inferior to the educational level in terms of sigma deviation.

All to subjects in the group having a Stanford Binet score lower than the educational level showed performanee levels on the vocabulary and educational achievement tests which were also as a general rule inferior to the educational level. These cases must, however, be considered in relation to the part of the scale of ability in which they fall. Cases c in Figure to, c in Figure $11, c, d$, and ε in Figure $12, b$ and ε in Figure 13 , and c in Figure 14 are apparently subjects who were either unable to profit by the extent of the educational training they experieneed or deteriorated after leaving school. These subjects stand in direct opposition to those of the first group who seem to have been able to compensate for a relatively poor education. Cases a and b in Figure 14, while they appear from the graphs to be subjects whose test performances fall considerably short of their educational levels, are not to be classed among those who failed to profit by school training or deteriorated after sehool. The situation in these two cases is more correctly understood as the result of inadequacies in the tests employed; both subjects eame elose to the upper limits on most of the tests and would undoubtedly have shown less disereponey between sigma deviation in test performante and sigma deviation in education if the tests had been more difirult. ${ }^{10}$
It goes without saying that the many faetors involved make the signifieance of the findings somewhat problematical. For a decisive conclusion the analyses would, of eourse, have to be cartied out on harger groups in whieh the faetors of age, type of occupation, general enviroament, and even marked differences in personality were controlled as far as possible."

10 The wares for these swa subjects, one with fourtecn and one with sinteen years' school. ing. were as follows:

It must be noted that the scores of sobjects like these, for whom the tests were nor adequate, would decrease the correlations between cducation and test performance. There were few such subjects, however, and for the group is 2 whole the tests were finly satislactary from the point of view of discraminative power, so that the cocrelations are probably Intle affected.

11 There is litcle difference in type or Ievel of occupation herween the intell 1 gent subjects with poor education and refainely tugh test performances and the duller subjects with goon'

Nevertheless the findings strongly suggest that those adults who had progressed further in school than their intelligence probably warranted had never acquired or had forgotten much of what they were taught in fundamental school subjects, while those who had not continued in school so far as their intelligence warranted yet had by some means acquired an amount of formal knowledge commensurate with their respective intelligence levels.
The tests used in this research are to a certain extent unsatisfactory for a complete study of the problem, not only because of their somewhat limited diseriminative power but also because they do not cover a sufficiently wide range of performances. It may be said that the individuals who remain in school longer, regardless of intellectual level, acquire more extensive knowledge than those who leave early, for example, in the fields of history, science, or literature. It would be surprising, however, if those who remained in school and profited by these studies did not continue to improve in subjects tested in this research, notably in vocabulary and the undetstanding of reading. In other words, tests of these subjects are at least parial indiees of educational development beyond the stage of the three R's, and the results indicate clearly that success on these tests has a much closer relation to intelligence than to edueation. There is, of eourse, still the possibility that those who remain in school longer, the dull as well as the bright, gain in subtler values which are not demonstrable by tests, but impressions gained from elose work with the subjects did not relate such values to length of school training.
The trend of the results gives one pause, partucularly in view of the sums spent to provide eight or more years of formal school training for each child. It seems clear, as educators and psychologists have long contended, that the adequate determination of the child's ablhtes is an essenual part of any educational program, and that the nature and extent of the trainugg should be adapted to these ablities. In this research there were clear examples of persons who were intellectually unable to profit by more than a certain minimum of the ordinary school curriculum, and yet had been
education but relatively poor sest performances. The subjectes of the first class inciuded a weivet, a rigger, a huckster, a recerving clerk, and a dericil worker; thasc of the second class a bartender. a hat blocker, two clerhs, a sewing-machane operator, in 2ssiscant forewoman, and 70 gutomobile mechanic. In other words, withn the limsts of the group analyzed here, there is no indicstion that duferences in scst performantes in adult jetrs depend on the character of the dally occupation. Qecupanon, Jike education, is uprowbtedif a factor and thece are, of course, other fateors as well, bur in all grolnablaty none of chem is so important as ntelligence.
exposed to this sont of training for as muelo as eight years. Thicy had nor yet enjoyed and probably nexer woukd enjoy any but the simplest skills in reading, writing, and arithmetic, and there is little doubt that a good part nf their school years should have been spent on other types of training. vocational or asocational. The individuals in the other class, who had reeeived less formal seliooling than they enuld have absorbed, may lesve one content with a laissez fuire doxerine, but it must be noted that these adults who did well in spite of a short sehool training would probably have done still better if they had been carried through an educational experience more nearly in accord with their intellectual ability.

6. occuration and test performance

When the groups of the Taussig Scale are combined to form three-the first, professional, semi.professional, and business; the second, skilled labor; and the third, semi-skilled and unskilled labor-ChiSquare determinations show a definite association between success on three of the tests and the professional and business group. These three tests are all verbal: the Compietion Beta, the Stanford Binet Vocabulary, and the Thorndike MeCall Reading Sealc. The contingency table for the Completion Beta is particularly interesting: only one case from the professional or business group made a score below the mean while 36 of the 20 eases of semi-skilled and unskilled labor made seores below the mean. None of the non-Language tests was found to have any definite association with any of the Taussig groups. On the basis of the Chisquare determinations, then, it is possible to say that members of the professional and business group are definitely superior to the other two groups in the abilities involved in the Completion Beta, Stanford Binet Vocabulary, and Thorndike MeCall Reading Scale. They are not superior in the abiliues sampled by the non-language tests, and at the same time it is noteworthy that the skilled laborers do not excel the other groups here.

The correlations between test scores and Barr Scale ratings are rather low in view of the fact chate che ratings were assigged on the basis of the intelligence supposedly necessary io carry on the given occupation. The two highest of those calculated-the corrclations with the Arithmetic Reasoning and the Thorndike Word Knowledge-were about +-60 , while that for the Stanford Binet was only +44 , and those for tbe Pintner Non-Language and Porteus Maze were lower and unreliable.

Statements as to the relationship between various test performances must necessarily be based on the intercorrelations, for the comparatively small number of subjects taking all the more important tests precluded any further statistical analysis. It is impossible therefore to make any definite statements as to the mental functions involved or their relative prominence. The days have long gone by when each investigator could suit his own fancy ith stating what his test rested, but it is to he noted that even now his statistical analysis of mental functions leaves him considerable latitude in naming them, and that there is still room for speculations on the basis of such material as is available in this study.

All but one of the test performances for which caleulations were made were found to be positively correlated, the exception being the slight negative eorrelation between the Thorndike Test of Word Knowledge and the Porteus Maze. While some of the correlations with the more specifie nonverbal tests were low and unreliable, the majority of the eorrelations were moderately high. The fairly close relationships thus indicated apparently depended rather on the functions involved than on the wide age range of the group, for when age was partialed out in a number of erucial eases the correlations remained about the same. When educational level was partialed out, however, some of them dropped about ten to twenty points.

The intercorrelations of the tests of the language group discussed in Chapter VIII are in general the highest of the lot, and are of sufficient magnitude, even if educational level is partialed out, to show clearly that there is a fairly close relationship between the functions tested by the Stanford Binet, the Completion Beta, the Stanford Binet Vocabulary, the Thorndike Word Knowledge, the Thorndike McCall Reading, the Gates Oral Spelling, and the Stanford Dictation Tests. ${ }^{12}$ A mong the intercorrelations in this group the highest appear between tests supposedly sampling the same type of accivity, that is, between the two spelling tests and the two vocabulary tests. ${ }^{13}$ On chis poinr, at least, the correlations support the

[^61]logical deductions which one would make as to the nature of the abilities involved. in order of degree the next corrclations are those berveen the reading comprehension tests and eertain of the socalled language intelligence tests. These are of sufficient magnitude to indicate that the functions involved are definitely related. It seems clear that for the adults of this group there is litule distinction between the hanguage intelligence rests and the reading comprehension tests, either in their intereorrelations or in their eorrelations with other tests. While there is evidence of similarity in the function or functions involved in all these tests, the definition of these functions is, of eourse, another matter. The most divious guess is that all these performanees involve verbal ability and that the major part of the relationship is probably to be accounted for on this basis.

When the tests of the battery'were frrst grouped the analogies were put with the "language intelligenee" tests, for they obviousty involved word knowledge and facility in the production of linguistie symbols under eertain eontrolling eonditions. All the evidence showed, bowever, that these tests stood beween the verbal and the non-verbal. They bore moderately close relationships to the tests of the hanguge group, although not so close as the interrelationships among these tests, and at the stme time they were fairly elosely related to the arithmetie and the non-verbal tests. They showed partieularly low correlations with the Thorndike Word Knowledge, a fatt which seems to indieste that the amalogies test is not so much a test of vocabulary as has sometimes been supposed. What the functions are which set the a nalogies a litule apart from the other language tests is, of eourse, not known; but it may possibly be, as already suggested, that they involve a spatial factor and that this is the explanation for their relationship to some of the non-verbal tests, notably the Porteus Maze.
A further consideration of the correlations between the tests in the language group aod those outside it suggests that there are definite relationships between the functions tested by the language and by the arithmetic tests, and that these are closer in the case of the Arithmetic Reasoning Test, As to the Pintner Non-Laoguage and the Porteus Maze, chere are still defnite relationships wich the Stanford Binet but, in general, low and often insignificant relationships with the other tests of the language group. It is evident that these two tests involve finmetions considerably different from those tested by the language tests, and also by the arithmetic tests, and the irregularity in the series of correlations with the Pintner Non-Language
and with the Porteus Maze would suggest the presence of several different factors.
The Goodenougb Drawing, as well as other non-verbal tests of the battery, apparently involves different and probably fairly spocific factors, bearing little relationship to the language or the arithmetic tests. These nonverbal tests sbow certain relationships to the Pintner Non-Language and some of its sub-tests, and certain interrelationships among themselves, particularly in the case of tests of apparently similar processes such as the Hard Learning and the Substitution. On the whole, however, these tests ciearly involve more specific functions than do the verbal, and this is probably the most that can be said about them at preseot, for it is impossible to make any immediate determinations of the functions actually involved.

CONCLUSIONS

THIS research has tapped a new and saluable source for the study of adult intelligence. Too litte advantage has yet been taken of the opportunity the hospital offters for detailed psychologieal studies of adults from the middle levels of the population. Within the hospital group there are undoubtedly many types and degrees of abnormality in mental funetioning, but there are also prients who may safely he stid to be "normal" mentally. Among them there are cases requiring hospitalization for two weeks or longer, and such patients are practically unique among adult subjects in that their time is comparatively unlimited and most of them are willing to spend a large amount of it on the examinations. They may be given not one but many tests, with the result that a much more complece knowledge of the individual's mental funetioning con be obtained than is usually the ease. Furthermore, they may be given repented examinations without fear that their interest will Alag; when the studies are properly conducted, interest in the examinations as well as friendliness with the examiner usually increases steadily throughout the work. It is true that individual studies are costly, but they are rewarded by the eertainty that the tests have served their purpose fully and that they have yielded noc only a seore value for the parsicular performance, but an opportunity for observing how that performance was carried through and what difficulties stood in its way.
The hospital group as a whole is the only single group which comprises all social and eeonomic strata. The ward patients, who formed the subjects in this research, constitute a more limited sample, but a sample which has esery indication of being truly representative of the middle levels of the population. It has been showo to have approximately the same occupational distribution as the population of Philadelphia; it seems to be close to the average of the Army population with regard to the grade of intelligence required by the occupations represented; and it shiows a distribution for education similar to the Army distribution.
The correlation between intelligence and the predisposition to disease or environmental conditions favorable for disease is still an unknown quantity. If it is negative the coosequence would naturally be that hospital patients, because of the disease condutions, tended toward inferiority in intelligence.
2. Vocabulary tests are well suited for work with adult subjects and readily aecepted by them. In use with the normal subjects in this research there was little to choose between the two vocabulary tests from the point of view of their diserimination within the group or their relation to other tests. The Stanford Binet Vocahulary, however, naturally had the advantage over the Thorndike Test of Word Knowledge in providing an opportunity for study of the patient's rexetions and attitudes.
3. The mixed analogies test in the forms arranged in this research differ. entiates fiirly well among "a verage" adults, is readily aecepted by them, and because of its apparent relationships with the non.verbal tests and its marked deeline with age is one of the most interesting theoretically.
4. The absurdities tert is also well adapted for use with adults, but is not satisfacory in the forms emplojed with these subjects and needs further development.
5. Many of the edueational achievement tests employed were satisfactory in their existing forms. Both tests of reading comprchension, the Thorndike McCill and the Chapman, were adequate from the point of view of their diseriminative power, but the former suffered a lithe in use with sdults beeause of too childish content. Both the arithmetie test, the Stanford Achievement Computation and the Reasoning, were found to be very satisfactory in diserimioating among these adults. The Gray Oral Reading Test, the Gates Oral Speiling, and the Stanford Dictation each showed a piling up of seores at the upper end of the seale, probably not so mucb because the tests were too easy as because the ateivities intolved are fairly well aequired by adult subjects, even by those of only moderate education and ability. The Morrison McCall Spelling Scale was obviously too simple for adultsfrom the middle levels of the population, but it is well adapted for work with low.grade or pathologieal cases.
6. Many of the non-verbal or performance tests at present availabie fail to discriminate among normal adults. Most of the tests of the Pintner Paterson Performanee Scale fall in this class. The data on these tests will not be useful in connection with further studies of normal adults, but have a definite value in studies of deteriorated adults whose level is low enough to require comparatively simple tests and whose deterioration may be estimated roughly by reference to the median and quartiles for normal aduls. ${ }^{\text {. }}$
7. Other non-verbal tests, notably those of the Pintner Non-Language,

[^62]are more satisfactory in differentiating among "average" adults and contribute data on abilities which are importantat adult as at ehildhood levels. There are not enough of these tests, however, or rather they do not eover all the types of performance which should be studied, for example, form or picture analogies.
8. The Goodenough Drawing Test presented an assignment unwelcome to many adults, and was undaubtedly a different type of problem for them than for the child, with success an the test mueh less closely related to intelligence than among children. Experience with the test of Drawing a Chair indicated that this too was a difficult problem, and suggested that studies of drawing in adults run up against very variable factors, emotional as well as intellectual, and must be interpreted with caution.

The analysis of the results for their bearing on the question of age and test performance is one of the most interesting sections of the work. The first conclusion is that by far the greatest extent of mental development as indieated by these test performances has occurred before the twenties, and that from this decade through the fifties there is litue further gain and comparatively little decline. While the magnitude of the development befire twenty far outweighs any change between twenty and sixty, smaller changes do occur in the adult period. As they appear in specific types of mental activities, these changes are comparatively little known, but are none the less important, for example, in estimating the relative value of the worker in a given occupation at twenty and at fify, or the value of educational projects for the "average man" in earlier or later decades. The results of this study show clearly that the peak of development and the course witb age are different for different performances. A survey of tbe findings sug. gests two conclusions which may be briefly stated as follows:

1. The abilities sampled by most of the socalled language tests are well maintained through the tharties and in the majority of cases show only slight dectines thereafter. The abilutes sampled by the vocabulary tests show little or no decline through the fifties.
2. The abilities sampled by another group of tests show an early peak, probably falling ether in the ewenties or before, with successive declines in the thirties, forties, and fifties. These declines are not significant at any one-decade or two-decade interval, but most nf them are significant for the interval between twenty and fifty or for the larger age groups twenty
through thirty four and forty five through hify-nine. A point of great interest is that all but one of these tests are of the non-language type, while the tests which do not show a drop in mean score before the thirties are language or arithmetic tests. The only "language" test in the group characterized by steady declines with age is the Printed Analogies, which repeatedly manifested a elose relationship to the non language tests. Dedines with age on some of the non-language tests probably reflected the generally accepted declines in simpler motor and perceptual abilities and particularly in those in which speed was a dominane fastor. Deelines in others, notably the Porteus Maze and the more complex tests of the Pintner NonLanguage Scale, and also in the Printed Analogies, could not be exphined on this basis. Furthermore, they were apparently not to be attributed to a greater difficulty among the older subjects in adapting to the test situations, for sumh diffieulty was not observed in the situation itself. 1s is suggested rather that these tests probably involve spatial factors and that the declines are to be understood on this basis.

From the point of view of the relation of education and test performanee, the findings indicated that the amount of formal sehooling was probably not such an important factor as it is generally supposed to be. An analysis of individual eases sevealed that the intelligent men with poor school training had effected some eompensation by aduit life, while the dull individuals who had received more training in the fundamental sehool subjects than their intelligenee warraoted either had never profited by it or had forgoten most of what they once knew. It would not be wise to lay too great stress on this point in view of the small size of the group, and also in view of the fact that at least ooe performance, arithraetie computation, showed a slighty eloser relation to education than to test intelligenee. It is important to note, however, that scores on all the other "educational achievement" tests analyzed bore a closer relation to the test intelligence than to the school grade completed, and that this relationship held eveo for the spelling tests, the skitls involved in which are definitely school trained. The results furnish additional proof, though such is hardly necessary, of the wisdom which lies in studying the mental abilities of the school child and making the nature and extent of his training fit his potentialities for development.
A study of test performance in relation to the occupational classes of the Taussig Scale indicared a coodition which is easily accepted on the basis of
viously involved verbal material, but is apparently as closely related to the arithmetic and non-verbal as to the verbal resss. The Arithmetic Computation Test also occupies a sort of mid-way position.

The evidence for a distinction between different groups of mental abilities gains additional support from the findings for the pathological groups studied by the same tests.2 Cases of right-sided cercbral lesion without aphasia or history of it were found to resemble the normal most closely in senterce dictation, oral spelling, and oral vocabulary, and to be signif. cantly inferior to the normal only on the axithmetic and some of the nonlanguage tests. These non-aphasic cerebral cases represent a sample inferior to the normal, but this condition does not explain the marked inequalities in their performance levels. Language abilities are apparently well maintained while the abilities required by the arithmetic and most non-language tests show evidences of deterioration.
The distinction between language and non-language is more pronounced in typical cases of aphasia; and here the opposite condition is to be found, that is, the language activities are more seriously affected than the nonlanguage. Interestingly enough, the arithmetic activities usually stand in between. Some few patients whose language processes are extremely limited or confused so that they speak and understand only a few words correaly nevertheless do better than the average of the normal group on nonlanguage tests, and may also do moderately well in arithmetic. Others, the great majority, show some deterioration in non-langusge activities and in arithmetic, but far less than in language. Only a few aphasie patients have anything like as great difficulty in non-language as in language work. In short, aphasia is a deterioration which uswally errends beyond language processes and involves activities which do not require overt verbal responses, but the changes in nou-language performances are less marked than those in language and in some cases the differentiation is clear enough for one to say that the aphasic patieat has lost one form of intelligent response, the verbal, and retained other forms which do not require language.
Uncertain as reasoning from the pathological to the normal must be, it scems probable that the characteristics of cases of cerebral lesion, with and without aphasia, give eertzin new eues for an understanding of normal mental functioning. Despite the positive correlations found for the normal group between almost all the many activiies studied and despite the fact

[^63]that analyses of individual cases revealed few marked constellations of mental test performanees, there are in all probability more or less independent groups of mental abilities. The typical normal adult does not show great differences in the development of these different abilities; in so far as performances on tests of intelligence and educational achievement may be taken as indiees, the various abilities all fall at fairly similar levels. In eases of brain disease, however, or at least in cases of localized brain disease, they may be affected unequally. As to the nature of these groups of meatal abilities and their interrelationships, there is still little precise knowledge and it may well be that groups as yet undefined will have to be postulated to explain results such as those found in this research. For the present it seems clear from this study and others, however, that there is probably a verbal ability of a sather extensive nature. Numerical and spatial abilities have also been indicated, particularly in Kelley's work, and the necessity for some sueh groups as these is suggested by the findings for both normal and pathologieal subjects.

APPENDIX

DESCRIPTION OF THE TESTS

1. Language Intelligence Tests
a. Controlled association tests
b. Kelley Trabue Complecion Exercise Beta
c. Vocabulary tests
d. Stanford Binet Scale
e. Miscellancous tests
2. Educational Achievement Tests
a. Reading tests
b. Spelling tests
c. Writing a Letter
d. Arithmetic tests
3. Non-Language Tests
a. Tests from the Pintner Paterson Performance Scale
b. Pintner Non-Language Mental Test
c. Cancellation
d. Immediate Recall: Kuhlmann Binet
c. Drawing a Chair
f. Goodenough Drawing
g. Porteus Maze Test

1. Lancuace intehugence tests

a. Controlled association tests
oppostres tests. The Opposites Tests used were chosen for the aghasia study and were too easy for normal aduls. ${ }^{1}$
mixfed annlogies tests. Two forms of the Van Wagenen Graded Analogies Tests were selected for the Oral and Printed Analogies Tests, B for the Oral and A for the Printed. ${ }^{2}$
The instructions were approximately the same as those outlined by Van Wagenen, except that the subliect was asked to give his response orally.

I am going to say three yords. I want you to tell me a fourth word that has
${ }^{1}$ For listi of atumulut words and procedure see Weisenburg and McBride, op- cirt, 58t53).
${ }^{2}$ M. J. Van Wagenen, Grafled Oppositer and Anslogier Tertr, J. Educ. Psythot., 1970, 11. 241-263.
the same relation to the third word I say as the second has to the first. Here's an example: color is to red as name is to - John. Here's another: page is to book as handle is to - knife. See if you can tell me the fourth word for this one: chew is to teeth as smell is to --. (If the subject could not tell the fourth word, it was told him, and the directions were given again.)
The successive items of the Oral Test were then read aloud, and the subject gave his responses orally. If beth Oral and Printed Tests were used, the latter was given second and with no further instructions except that the subject was asked to read the words instead of listening to them. He responded orally. If the Printed Analogies were used alone, printed directions were given and for convenience these were placed at the top of the test sheet.
Both tests were cimed, but the store was taken as the total number of eorrect tesponses.
As given, each test induded 50 items ${ }^{3}$ but some of these wese of doubtriul valuc, tither boeause subjects sometimes misunderstood them or because of dificulty in assigning a plus or minus score. When doubtful items had been eliminated the Oral Test contained 36 analogies, the Printed, 40 . Analysis of the difficulty value of each item showed some overlapping, that is, two or more items filling at the same difieulty value. One item of such a group was eut from the Oral Test, and five from five different groups from the Printed. Each seale then eontained 35 items. The two lists, each ranked in order of difficulty, are given below, together with the aceepted response or responses to each analogy.

Oral Analogies Test

2. horn is to blow as bell is to - (ring clamor)
3. rain is to summer as snow is to -- (winter)
4. vinegar is to sour as sugar is to - (sweet)
5. work is to day as sleep is to - (night)
6. baker is to bread as bees ate to - (honeg)
7. rug is to floor as pictures are to - (wall)
8. iron is to heavy as aluminum is to - (light)
9. year is to month as week is to - (day)
10. high is to low as near is to -- (far)
11. Stove is to heat as lamp is to - (light)
12. raise is to lower as open is to - (shut, close)
13. cat is to ford as wear is to - (clothes)
14. country is to road as ciry is to - (street)
15. under is to over as down is to - (up)
16. navy is to sailors as army is to - (soldiers)
17. foot is to leg as hand is to - (arm)

[^64]17. sweet is to taste as red is to - (color)
18. silver is to tarnish as iron is to - (rust)
19. front is to back as top is to - (bottom)
20. hard is to soft as rough is to - (smooth)
21. triangle is to three as square is to - (four)
22. fair is to cloudy as sunshine is to - (rain)
23. fruit is to basket as water is to - (pail, bucker, bottle, pitcher)
24. bot is to wood as bottle is to -... (glass)
25. wall is to paper as floor is to - (carper, rig. paint, varnish, stain)
26. coal is to back as gold is to - (yellow)
27. foot is to ankle as hand is to - (wrist)
28. man is to legs as carriage is to -(whecis)
29. leg is to knee as arm is to - (elbows)
30. kettle is to utensil as chair is to - (furniture)

3r. park is to gate as house is to - (dior)
32. lenife is to blade as fork is to - (tine, prong, points)
33. number is to figures $2 s$ word is to - (letters)
34. grain is to wheat as fruit is to - (any kind of fruit)
35. house is to door as field is to - (gate)

Printed Analogies Test
Write a fourth word that has the same relation to the third word in the row that the second word has to the first word is the row:
color red name JOHN
page book handle KNIFE
chew teeth smell -

1. birds fly fish - (swim)
2. summer hot winter - (cold)
3. light day dark - (night)
4. sun shines wind - (blows)
5. father son mother - (daughter)
6. hat head shoe - (foot, feet)
7. barn hay library - (books)
8. cup saucer knife - (fork)
9. cats scratch bees - (sting)
to. food eat books - (read)
II. hair black eyes - (hive, brown, black, etc.)
re. man husband woman - (wife)
10. thermometer temperature dock - (time)
11. clothes tear dishes - (break)
12. water drink air - (breathe)
13. hap oil stove - (coal, fuel, wood)
14. happy laugh sad - (cry, weep)
15. potato vegetable veal - (meat)
16. fax near there - (here)
17. sparrow bird mosquito - (insect, bug)
18. bread flour candy - (sugar, molasscs)
19. city mayor state - (governor)
20. watcr glass coffee - (cup)
21. sight blind hearing - (deaf)
22. July month Friday - (day)
23. slipper shoe cap - (hat)
24. cheap many costly - (few)
25. air birds water - (fish)
26. complex difficult simple - (easy)
27. month week day - (hour)
28. present known future - (unknown)
29. mail write tclephone - (talk)
30. picture frame feld - (fence, wall)
31. victory defeat success - (failure)
32. work problems play - (games)

b. Kelley Trabue Completion Exercise Beta

The Kelley Trabue Completion Exercise Bcta was given and scored according to Kelley's revision. ${ }^{4}$ It was suitable for almost all the subjects of the normal group, with the exception of a few who had great dafficulty in reading, and for these it was not used.

c. Vocabulary tests

stanfond binet vocabulary test. This test was given and scored in the regular way. No evidence that subjects had had experience with thes test before was ever found, although it has been published in popular magazines and news. papers.
thorndike test of word knowledce. This test, a multiple choice type of vocabulary test, was given and scored according to Thoradike's directions. ${ }^{0}$ It was not used in the case of those few subjects who had great difficulty in reading.

d. Stanford Btnet Scale

The Stanford Binet Scale was given and scored accordang to Terman's direc-

[^65]tions. ${ }^{7}$ A complete test was always made but the Code 'Test, Year XVI, as noted in Chapter IV, was usually omitted because it was not well received by the adult subjects. Alt tests were given from the X-year level througb the level at which no test was passed; in cases of one or more failures at X years, the earlier tests were given down to the age at which all tests were passed. In no case did the testing have to be extended below the V -gear level.

c. Miscellaneors tests

absurbities tests. These were eomposed nf absurd statements, chiefy from among those suggested by Ballard. ${ }^{8}$ They were divided into two groups by selecting alternate items; one group was precented neally and the other in print. After a few trials the numbers in each group were cut to 12 , with the climination of those items which caused difficulty. When all the tests had been made, the responses were scored by the three psychologists working together. Two more items were cut, one from each series; both nf them were often misleading to good as well as poor subjects.
The following directions were used in giving the Oral Test:
I am going to read you a paragraph that has something foolish about it, something absurd. When I've finished, I want you to tell me what is foolish about it . What is foolist about this sentence? "A soldier in the mareh eom: plained that every man was out of step except himself." (If the subject could not indicate the absurdity, it was explained to him.)
If the Printed Test were given later no further directioos were added. For convenience in eases where the Printed Test alone was used, siznilar ditections were added at the rop of the printed page,

Oral Absurdities Test

1. A man asked a boy where Mir, Smith lived. He said: "The first house you come to is a barn 2nd the next is a haysack-the next is Mr. Smidh's" 1. A gentleman fell from his carriage and broke his neck, but received no further damage-
2. The judge said to the prisoner: "You are to be hanged, and I hope this will be a warming to you."
3. Wheo there is a collision the last ear of the train is usually damaged most, so the guard thinhs it would be best if the last car were always uken off before the train starts.
4. A boy wrote on his composition: "Soap smells nice, but is tastes horrid. It tastes worst of all when you get it in your cye."

[^66]6. An old genterman complained that he could no longer walk around the park as he used to; lie could now go only halfway round and back again. 7. A houscholder saw an adierisement: "Buy one of Simkin's stoves and save half your coal." He bought two in arder to save all of it.
8. I am not conceited, but I dor't think I'm half as clever as I really am.
9. You are thin and I am thin, bat he is thinner than both of us put together. 10. A showman advertised for a giant and a dwark. A man of ordinary height presented himself and offered to fill both parts. He daimed to be the smallest giant in the world and the biggest divarf.
11. Every rule, even this one, has an exception.

Printed Absurdities Test

Read this sentence and decide what is foolish about it.
A soldier in the march eomplained that every mon was out of step except himself.
What is foolish about each of these paragraphs?

1. I like end slices of bread. I gave the girl a whole loaf of bread and told her to bring me the two end slices. I afterward found that she had sliced the entire loaf. I asked her why she did this. She said: "How could I get the second end piece unless Idid?"
2. I received a letter from a friend in which he said: "If you don't get this letter, just let me know and I'Il write again."
3. I read in the paper that they fired two shots at a man. The first shot killed him but the sceend one dida't.
4. This morning I met a smart young man. He was walking dowa the sureet with his hands in pockets and twisling a brand new walking stick.
5. An Irishman called one day at the post office and asked if there was a lettef waiting for him. "What is your namei" asked the postrmaster. "Surre," said the man, "you will find my name on the envelope."
6. It is said that a certaio town in Greece contains two relics of St. Paul; one his skull when he was a boy and the other hiss skull when he was a man. 7. A teacher said to his boys: "Tomorrow we will have an examination, attendance at which is voluntary; so if any boy is absent hed better look out." 8. A man said to his shoemaker: "You blockhead" I told you to make one of the shoes larger than the other, and instead of that you have made one of them smaller than the other."
7. There is a trec in America so tall that it takes two men and a boy to see the top.
ro. The three men laughed, then stopped suddenly as the eges of each met those of the others across the table.
rI. The horse obeys his master because his eyes magnify so that his master seems to the horse to be much lorger than the horse himsel.

The items were first scored by allowing two points for a correct response and one point for a partially correct responsc, but differentiations between the eorrect, the partially correct, and the zero responses were difficult, and a plus or minus scoring system was finally adopted. In general correct answers are those stating the absurdity, those correcting the absurdity, or commenting upon it in * such a way as to show its clear recognition, or, less good, answers definitely implying the absurdity. Incorrect answers represent for the most part incorrect criticisms or interpretations, irrelerant comments, answers denying the absurdity, answers restating it, or complete failure to respond. Examples of answers eonsidered correct are given below.

Scoring Guide for Oral Absurdities Test

1. How could a haystack be a bouse?

Why didn't he say the first house was where Mr. Smith lived?
The first "house" would not be a house; it would be a barn or a haystack.
2. He'd be dead if he broke his neck.

That's damage enough.
3. What was the object of warning him if he was to be hanged?

Too late to warn him.
He didn't need a warning. He'd be a warning to others.
That was his finish.
He expected him to live, I suppose, after he was hangedl
4. There would always be a last car.

If the last ear is tahen nff, the car next to the last would be wrecked.
You would have no cats on the train then.
5. Can't taste in your eye.

It burns your eye.
6. That is the same as all the way round.

He was still able to walk around just as far.
7. He was burning twice as much.

He'd have to burn some coal if he wanted heat.
He should have bought three stoves to get sone back!
8. He is conceited whea he says he thinks he's dever.

He is contradicting himself there.
He is conceited.
9. Two put together would be fatter not thinner.

He couldn't compare the two of usi we would make one lager than he is.
He would have to be fat then.
Comparing the thinness of one pecson to two is idiotic.
10. Impossible for a man of normal statare to assume at will the proportions of a dwarf and a giant.
If he wants a giant he must get a big man, and if he wants a dwarf he must get a small man.

He was neither.
He couldn't be both at the same time.
11. It would have to include that one; then every rule does not have an exception.
If eiery rule, then that one the same thing, and then it's not true.

Scoring for Printed Absurditics

2. She should have goten both end pieces by slicing both ends off, not by cutting the whole loar.
Foolish to cut the whote loaf.
All she had to do was to turn both ends around.
3. You would have to get the leter to let him know.

How could the person hnow if they didnt receive the letter?
3. He was already dead with the first shot.

He couldn't be killed twitc.
The second one couldn't.
They would not have to shoot the second shot.
Not necessary for a second to kill him after one did.
4. Impossible to twirl a stick with his hands in his pochers.
5. The postmaster could not give the Irishman his letter if he did not know his name.
He would not know what name to look for.
He wouldn't be able to tell which envelope.
6. Twa skulls for St . Paul; that's one too many. There couldn't have been two skulls.
St. Paul lived to be a man. Couldn't get shull when he was a boy.
St. Paul had only one skull and the relic part is a fake.
7. If attendance is voluntary, why need the boys look out?

Voluntary is foolsh; it was really compulsory.
That was a threst; it wasn't voluntary.
Voluntary means to do what you please, so if a boy is absent he would be doing what the teacher said.
8. That's the same thing.

Just made the job right.
He did what he told him to do already, if he did not tell hum which shoe to male larger.
One would be smaller anyway.
9. If any of the three had ordinary eyestght, they could see the top alone.

It would not take bur one person to see the top of the tree.
The boy could see as high as two men and a boy.
Why does it take three people to sec the top? That's foolish.
How do they relay that seeing game?
10. Three men's eyes could not mect all at the same time.

How see two other pairs at once?
They would have to be crosseged.
Their cyes could not meet.

ii. Would magnify himself too.
 Horse cannot see himself to compare with his master.

pintwer-toops revised directions test. This test was useful for certain abnormal eases as a quick index of reading ability. ${ }^{9}$ Interpretation of the results was sometimes difficult, however, because for two items at least the subject could get enough cues from the non-verbal test situation to make the correct response. For normal subjects the test is not simply an index of reading ability.

2. EDUCATHONAL ACHIEVESENT YEST

a. Reading tests

gray orsl aending piragrephs Sets I through IV covered the decessary gange of diffieuty so wiell that the cexaminers used the particular set or sets best suited to the reading level of each subject. ${ }^{30}$ This procedure made for effecient testing but the results were dificult to handle. As noted in Chapter IV, about go per cent of the group took Set IV, and the results for these subjects were presented, with the seores based on the total time for reading the 150 words of the test plus $1 / 50$ of the total time for each error. ${ }^{\text {II }}$
thorndike mecall meanno scale. This test was given and scored aecording to the author's directions. ${ }^{12}$ Form 1 was used for all the normal subjects. No time limit was set, but with rery few exceptions the subjects finishad all they could do in twenty to thisty minetes.
chapman unspefoed readnc-comprehension test. This was selected especinlly beesuse the non-verbal response made it raluable in the aphasia study and it turned cut to be well adapted in form and content to normal adult subjects. ${ }^{13}$ No time limit was set, but the subjects usually finished within thirty minutes.

b. Spelling zests

cates cral spelive mest. This test, composed of 36 words, was scored in terms of the total number of words right on the first attempt or corrected spontaneously by the subject. ${ }^{14}$

[^67]morbison mecall spellino sealr. This test proved to be valuable for the abnormal cases but on the whole too easy for the normal. ${ }^{15}$ List $:$ was used for the normal subjects.
stanford acmevement dictation test. The test used was the New Form W. ${ }^{18}$ The sentences were begunat a level well below the subject's ability, usually at the point where the sixth grade is supposed to begin, and continued until all three crucial words in two suecessive sentences had been failed. In the case of some few subjects this second condition was not obtained; for after repeated Giilures, although not on sir words in suceession, they refused to continue the test.

c. Writing a Letter

In the eourse of the examination, eath subject was asked to write a letter, to whomever he pleased and on whatever subject be pleased. When all the letters had been collected, seale values for each were determined on the basis of the Nasssu County Supplement to the Hillegas Scale. 17 Each seale value represented the value assigned by at least two of the three psychologists working independently, or in the eomparatively rare eases in which three diferent values were assigned, the middle one of these.

d. Arishmetric sesss

The Stanford Achievement Arithmetic Test was used in the old Form A; both sections, Cormputation and Reasoning, were given. ${ }^{33}$ No time limit was set, but ferw subjects required more than fifteen to twenty minutes for each.

3. Non-languace tests

a. Teats from the Pintner Paterson Performance Scale

Many of the ten tests of the Pintner Paterson Performance Scale whech were used were poor in discrimnating among the adults of the normal group, and only the best of them-the Mare and Foal, the Segurn, and the Substitutionhave been reported. ${ }^{19}$ All these were given and scored according to the PintnerPaterson directions.

b. Pintner Non-Language Menzal Tesi

The Pintner Non-Language Mental Test was given as an individual test,
${ }^{15}$ Morrison McCall Spelling Seale. Yonkers: Warld Book Company.
${ }^{15}$ A sample ser of the Niw Stanford Achurvement Dectation Test, convining the forms V , W, and X, may be obcained from sbe World Book Company, Yonkers.
${ }^{17}$ M. R. Trabue. Supplementrng she Hallegar Scall. Texch. Coll. Rec.. 2917, 18, 51-84.
${ }^{18}$ Tests and manual pubished by the Wortd Book Company, Youkers
The old Form A was used becaste it had bren given to a mumber of the abnormal eases before the new form was publushed.
${ }^{10}$ R. Pintiner and D. G. Paterson, A Soale of Fefformasser Tesss, 1917.
with the necessary demonstrations on paper sather than on a blackboard, but otherwise exactly according to Pintner's directions. ${ }^{20}$ Pintner's weighting system was followed in obtaining the total score, but the data for the various sub-tests in terms of raw seore were also analyzed separately.

c. Cancellation

The Cancellation Test was one of a small group of relatively simple tests tried out with the abnormal cases, and the only one used with the normal subjects.? The score was taken as the number of a's correctly erossed in one and a half minutes.

d. Immediate Recall: Kuhimann Binet

The Test of Immediate Recall of Unfimilias Forms was given and scored according to Kuhlmann's directions, although for purposes of comparison with the abnormal eases time and error scores were also calculated separately.a

c. Drawing a Chair

The test of Deawing a Chair was arranged for the abnormal cases, to study the ability to draw from a model. The ehair was set at such an angle that the subject could see the left rear leg between the right front and rear legs. If he started to draw the chair as seen straight from the front, he was allowed to continue without comment. The type of ehair always used was an upright chair widhout arms.
The seoring sytern devised was modeled after that Goodenough arranged for the drawing of a man in that points were given for the essential components of the drawing and for the skill and accuracy with which these were represented. ${ }^{33}$

Scoring for Drawing of a Chair

ra. Top line for back of chair
b. Upright on one side of back-
c. Upright on the other side
d. Middie slat, bar, or panel

2a. Seat of chair
b. Attachment of seat to back

3a. Left rear leg

[^68] 138.
b. Lefif frontleg
c. Right front leg
d. Right rear leg
e. Correct position and angle of left rear leg
f. Correct position and angle of leff front leg
g. Correct position and angic of right front leg
h. Correct position and angle of right rear leg
i. Stretchers
j. Correst number of stretchers
k. Correct position of stretchers
43. Proportion: back narrower than high
b. Proportion: back longer than frone legs
c. Proportion: seat area less than that of back
d. Proportion: legs roughly equivalent in length
50. Lines "reasonably firm and mostly meeting"
b. Lines firm and meeting

6a. Perspective indicoted by shape of seat
b. Angle of atwehment of seat and back, indiesting that seat and back are approximately at right angles
c. Legs showing no transparency, and coctect superposition, ic., of seat, legs, and stretchers
Each deawing was scored independently by wo of the three payshologists; moot points were then discussed with the third prychologist and a final decision reached.

The 35 deawings were ranked by each of the three psychologists, The rankdifference correlation between the average rank so determined and the rank in order of scose assigned was $+88 \pm .03$.

f. Goodenotrgh Draterng

The Goodenough Drawing Test was scored according to Goodenough's directions. ${ }^{24}$ As for the drawing of a chair, each production was scored by two of the three psychologists, working independently, moot points were discussed with the third and a final decision reached. The 66 drawings were then rated, first by the three psychologists, who sanked them in order of their quality as representations of a man, and then by three artists. The rank-difference correlation between the two rankings was surprisingly high, +97 . The correlation between the ranking assigned by the three artists and the order in terms of the Goodenough Score was also high, +.91.

g. Porteas Maze Test

The Porteus Maze Test was given and scored according to Porteus' direc-

Cantrr, II. D. Pamily Resemblances in Verbal and Numerical Abiliter. Geset. Pachot. Monog, t932, 12, t-104.
Citrill, J. McK. Mental Tests and Mcasurements. Afind, $1890,15,373-3 \mathrm{gr}$. Cirtilu, J. McK, and Fanasto, L. Physieal and Mental Messurements of the Sudents of Columbia Unisetity. Psychol, Nev, 8896, 3, 6t8-64 9 .
Carrith R. B. OceupationaI Norms of Inteltigence and the Standardiction of 2 n Adult Intelligence Test. Biti. J. Psychol., Gen. Sec., 1934-350 250 1-25.
Curna, C, Y. Psychological Tests Found in Chins during the Jlan and Wei Dynastes. Chinese J. Pyychol, 1922, s, No. \& 7. . Nbstracted in Pryeliol. Abstracts, 1928, 2,465 ,
Cons, At. V. The Limits Set to Educational Achiesement by Limited Inellisence. J. Eilue. Psychol, 1922, 13. 449-4 $6 ; 5$; 5 6-555.
Conasd, II. S. General-Jnformation, Intelligence, and the Deline of Intelligence. J. Appl, Paychol,, 1930, 14, 592-599.
Conand, H. S. The Mreasuremene of Aduft Inteligenze, and the Requisites of 2 Gencral Incelligenee Test. J. Soc, Psyehol, 1931, 2, 72-86.
Covmad, II. S., Ind Josiz, II. E. Psychological Studics of Motion Pizures. IIT: Fideling of Report as a Mea sure of Adult fntelligence. Unir. Calif. Publ.
Psychol, tg99, $3,245-2 ; 6$.
Conasd, H. S, and Jover, H. E. Psychologieal Studies of Mfotion Pictures. IV: The Techinique of Mental- Test Surveys mmong Adults. Univ. Calif
Publ. Psychol, 1929. 3, 277-234.
Conand, H. S., ind Jones, F. E. Psychological Studies of Motion Pictures. V: Adolessent and Adult Ser Differences in Immediate and Delayed Recall. J. Soc, Psychol., 1931, 2, 433-459.

Conneo, H. Sn Jowes, H. E., and Hstao, H. H. Sex Differences in Mental Growth and Dedine. J. Educ. Psychol., s933, 24, $\mathbf{6 6 1 - r 6 9 \text { . }}$
Cowdrar, K. M. Measures of General Intelligeare as Indiess of Suceess in Trade Learning. J. Appl. Psychol., 1972, 6, 311-330.

Diwson, S, and Cons, J. C. M. Intelligence and Disease. London: H. M. Stationery Offce, 193r. 53 Pp . (Medical Research Council, Special Report Series, No. 162.)
Doul, E. A. The Average Mental Age of Adules. J. Appl. Psychol., r999, 3 , 317-328.

Fexnald, M. Rn, and Arliry, A. H. A Psychological Study of a Group of Crippted Children of Various Types. Sch. \& Soc., 1925, 21, 449-452. Fishre, R. A. Statistical Mecthods for Rescanch Workers. 3rd ed. Edioburgh: Oliver and Boyd, r930. xiii +283 pp-

Foster, J. C., and Taylor, G. A. The Applicability of Mental Tests to Persons over Fifty Years of Age. J. Appl. Psychol, 1920, 4, 39-58.
Freeman, F. N. Mental Tests. Their History, Principles and Applications. Boston: Houghton Mifilin, 1926. ix +49 pp .
Far, F. D. The Correlation of the Reverse Audito-Vocal Digit Memory Span with the General Intelligence and Other Mental Abilities of 308 Prisoners of the Eastern State Penitentiary of Pennsylvania. Psychol. Clin, 1931, 19, 156-164.
Fryer, D. Occupational-Intelligence Standards. Sch. \& Socn 1922, 16, 273277.

Garnett, H. E. Statistics in Pspchology and Education. New York: Longmans, Green, 1926. xiii +312 pp .
Garbeit, H. E., and Scharck, M. R. Psychological Tests, Methods, and Results. New York: Harper, 1933. $x+137+224$ pp.
Guani, T. R. A Review of Race Psychology. Psychol. Bull., 1930, 27, 329-356.
G_{4} res, A. I. The Cortelations of Achievement in School Subjects with Intelligence Tests and Other Varizbles. J. Educ. Psyehol., 1922, 13, 129-239; 223-235; 277-285.
Gates, A. I. Thé Iaproiement of Reading. New York: Macmillan, 1927. xii $+44^{9} \mathrm{pp}$.
Gaw, F. A Study of Performance Tests. Brit. J. Psychol., Gen. Sec., 1924-25, 15, 374-392.
Goobenovel1, F. L. Measurement of Intelligence by Drawings. Yonkers: World Book Co, 1926. xi +173 Pp.
Grace, A. G. Individual Differences in Adults. J. Educ. Psychol, 1932, 23. 179-186.

Halu, G. S. Senescence: The Last Half of Life. New York: Appleton, 1922. 2xvii +588 pp .
Hounvoworth, H. L. Mental Growth and Dedine: A Survey of Developmental Psychology. New York: Appleton, 1927. xii $+3^{88} \mathrm{pp}$.
Hsho, H. H. Pefformance of Army Alpha as a Function of Age. Thesis presented in fulfilment of requirements for M.A. degree, Columbia University, 1927. Unpublished.

Jones, H.E., and Conrar, H. S. The Growth and Dedine of Intelligence: A Study of a Homogencous Group between the Ages of Ten and Sixty. Genet. Pspchol. Monng, 1933, 13, 223-298.
tions. ${ }^{2 / 3}$ Aficr a number of tests had been made, it became evident that the recording of times would hetp in the analysis of the respense. In addition to the total time, the number of seconds between the presentation of the maze and the beginning of the tracing was recorded, and also the duration of any marked pauses at particular points.
${ }^{31}$ Portews, Perteut Tefta-The I'inelant Rerinion, 1919; Stufits in Mentst Devigrions, 1921, 75-115.

BIBLIOGRAPHY

Alexander, H. B. A Comparison of the Ranks of American States in Army Alpha and in Social-Economic Status. Sch. \& Soc., 1922, 16, $3^{88-392 .}$
Anonymous. The Experience of the German Army with the Defective and the Fceble-Minded. J. Psycho-Asthenics, 19ri, 16, 68-76.

Babgock, H. An Experiment in the Measurement of Mental Deterioration. Atch. Psychol, 1930, 18, No. 117. 105 PP.
Batlard, P. B. The Limit of the Growth of Intelligence. Brit. J, Psyehoi., Gen. Sec., 1921, 12, 125-141.
Berson, M. F. Intelligence at Senescence. J. Appl. Psychol, 1920, 4, 219-234Einet, A., and Henrr, V. La psychologic individuelle. Année psychol., 1895, 2, 411-465.
Binet, A., and Simov, T’h. Sur la nécessité d'une méthode applicable au diag. nostic des arrièrés militaires. Annales médico-pspchol., 1910, 11, 123136.

Bingham, W. V., and Davis, W. T. Intelligence Test Scores and Business Sueeess. J. Appl. Psychol., 1924, 8, r-22.
Bajchim, C. C. A Study of American Intelligence. Princeton: Princeton Univ. Press, 1923. $x x y+210 \mathrm{pp}$.
Brichast, C.C. A Study of Error. New York: College Entrance Examination Board, 1932. xiii $+3^{8} 4$ Pp.
Buichams, C, C. Intelligence Tests of Immigrant Groups. Psychol. Reve 1930, 37, 158-165.
Bnolyen, C. R. Report of the Commission on the Scholastue Aptitude Test. Annual Report of the College Entrance Exammation Board, 1930-1934, 5-9.
Bronner, A. F. Healy, W., Lowe, G, and Shimerero, M. A Manual of Individual Mental Tests and Testing. Boston: Latle, Brown, 1927. x x 279 pp.
Brooks, F. D. The Psychology of Adolescence. Boston: Houghton Miffin, 1929. rxiii +629 Pp. Chapters IV, V, and VI.

Burr, E. Minimum Intellectual Levels of Accomplishment in Industry, J. Person. Res., 1924, 3, 20\%-212.

Caldwell, H. H. Adule Tests of the Stanford Revision Applied to University Faculty Members. I. Exper. Psychol, 1922, 5, 247-262.
Carothers, F. E. Psychological Examinations of College Students. Arch. Psychol., 19:2, 6, No. 46. 82 pp-

Carter, H. D. Family Resemblances in Verbal and Numerical Ahilities. Genet. Psychol. Monog, 1932, 12, 1-104.
Cattrit, J. MeK. Mental Tests and Measurements. ALind, 1890, 15, 373-381.
Cartelu, J. McK., and Farraso, L. Physical and Mental Measurements of the Students of Columbia Unisersity. Psjchal. Rev, $1896,3,6 \times 8-648$.
Cattelt, R. B. Occupational Norms of Intelligence and the Standardization of an Aduts Intelligence Test. Brit. J. Psychol, Gen. Sec., 1934-35, 25, 1-23.
Cheng, C. Y. Psychological Tests Found in China during the Han and Wei Dynasties. Chinese J. Psychol., 1922, 8, No. 4, 7. Abstracted in Psychol. Abstracts, 1928, 2, 46 n .
Cond, M. V. The Limits Set to Educational Achievement by Limited Intelligence. J. Educ. Psychol,, 1922, 13, 449-464; 546-555.
Conrad, H. S. General.informasion, Intelligence, and the Decline of Intelligence. J. Appl. Psychol., 1930, 14, 592-599.
Conmad, H. S. The Measurement of Adult Intelligence, and the Requisites of 2 General Intelligence Test. J. Soc. Psychol., 1931, 2, 72-86.
Corrad, H. S. and Jones, H. E. Psychological Studies of Mfotion Pictures. III: Fidelity of Report as a Measure of Adult Intelligence. Univ. Calif Publ. Psychol., 1929, 3, 245-776.
Conrad, H. S, and Jones, H. E. Psychological Studies of Morion Pietures. IV: The Techrique of Mental-Test Surveys among Adults. Univ. Calif. Publ. Psychol, 1929, 3, 277-284.
Conma, H. S, and Jones, H.E. Psychological Studies of Motion Pictures. V: Adolescent and Adult Sex Differences in framediate and Delayed Recall. J. Soc. Psychol., 1931, 2, 433 -459.

Combad, H. S, Jones, H. E., and Hsino, H. H. Sex Differences in Mental Growth and Dedine. J. Educ. Psychol., 1933, 24, 16t-1 69.
Coworay, K. M. Measures of General Intelligence as Indices of Suceess in Trade Learning. J. Appl. Psychol, x922, 6, 3 ri+330.

Dawson, S., and Conv, J. C. M. Intelligence and Diseasc. London: H. M. Stationery Offre, 1931. 53 pp. (Medical Research Council, Special Report Series, No. 16z.)
Doll, E. A. The Avcrage Mental Age of Adults. J. Appl. Psychol, 19r9, 3, 317-328.

Fernald, M. R, and Aaritt, A. H. A Psychological Study of a Group of Crippled Children of Various Types. Sch. \& Soc., 1925, 25, 449-452. Fisher, R. A. Statistical Methods for Rescarch Workers. 3rd ed. Edinburgh: Oliver and Boyd, s930. xiii + 283 pp.

Foster, J. C., and Taylor, G. A. The Applicability of Mental Tests to Persons over Fifty Years of Age. J. Appl. Psychol, 1920, 4, 39-58.
Frieman, F. N. Mental Tests. Their History, Principles and Applications. Boston: Houghton Miffin, 1926. ix + 491 Pp .
Fry, F. D. The Correlation of the Reverse Audito-Vocal Digit Memory Span with the General Inrelligence and Other Mental Abilities of 308 Prisoners of the Eastern State Penitentiary of Penssylvania. Psychol. Clin, 1935, 19, 156-164.
Fryer, D. Occupational-Intelligence Standards. Sch. \& Socy 1922, 16, 273277.

Garrett, H. E. Statistics in Psychology and Edugation. New York: Longmans, Green, 1926. xiii +312 PP .
Gareite, H. E, and Schneck, M. R. Psychological Tests, Mcthods, and Results. New York: Harper, 1933. $x+137+224$ PP.
$\mathrm{G}_{\text {arth }}$, T. R. A Review of Race Psychology. Psychol. Bull, 1930 , 27, 329-356.
Garis, A. I. The Correlations of Achicvement in School Subjects with Intelligence Tests and Other Variables. J. Educ. Psychol, 1923, 13, r29-139; 223-235; 277-285.
Garis, A. I. The Improvement of Reading. New York: Macmillan, 1927. xii +440 pp .
Gaw, F. A Study of Performance Tests. Brit. J. Psychol., Gen. Seen $1924-25$, 15, 374-392.
Goodenower, F. L. Measurement of Intelligence by Drawings. Yonkers: World Book Co., 1936. xi +173 pp.
Gruce, A. G. Individual Differences in Aduls. J. Educ. Psychol., 1932, 23, 179-186.

Hall, G. S. Senescence: The Last Half of Life. New Yorl: Appleton, 1922. $x x y i i+5{ }^{8} 8$ pp.
Holtingworth, H. L. Mental Growth and Dechne: A Survey of Developmental Psychology. New York: Appleton, 1927. xii +388 pp. Hstuo, H. H. Performance of Army Alpha as a Function of Age. Thesis presented in fulfilment of requrements for M.A. degree, Columbia University, 1927. Unpublished.

Jones, H. E, and Conrad, H. S. The Growth and Decline of Intelligence: A Study of a Homogeneous Group between the Ages of Ten and Sixty. Genet. Psychol. Monog, 1933, 13, 223-298.

Kelefy, T. L. Comparable Measures. J. Educ. Puchot. 1914.5, 589-555.
Krlety, T. L. Crossroads in the Mind of Man. A Study of Diferentiabie Mental Abilities. Sanford Universiry: Stanford Univ. Peess, 1923. vii +236 FP .
Kelley, T. L. Individual Testing with Completion Test Exercises. Teach. Coll. Rec. 19:7, 18, 373-332.
Kise, 1, and Gold, II. A Tentative Standardization of Certain 'Opposites Tests." J. Educ. Psjchol., 1916, 7,459-48.
Kungerac, O. An Experimental Study of Sped and Other Factors in "Racial" Differences. Arch. Psychol., 1939, 15, No. 93. 111 Pp.
Knicirt, F. B. The Signifieanee of Unwillingness to be Tested. J. Appl. Psychol., 1922, 6, 211-7t2.
Koluatrs, J. Ueber Sprach. und Schreibstörungen im allgemeinen und als "kleine Zsichen Jer Geistesschwächung" bei Tuberkulose und im Alter. Das Verhälenis 2wischen innerer Sprache und Schreibfehler. Arch. .. Psjehiat. u. Nenenkh, 1933.99, 109-196.
Korninesex, A. W., and Kivasterr, F. A. Pychological Tests in Business. Chicago: University of Chicngo Press, 1924. ix +187 FP .
Kemislans, F. AIlandbook of Mental Tests. Baltimore: Warwick and York, 1922. 208 pp .

Lambetil, M. and Lasiex, L. H. Race Differences in Speed of Reaction. J. Genet. Psyehol., 1933. 42, 255-297.

Lenman, H. C ${ }_{n}$ and Wrtry, T. A. Sex Differences: Some Sources of Confusion and Error. Amer. J. Psyehol, 1930, 42, 140-147,
Lincoun, E. A. The Mental Age of Adults. J. Educ. Res., 1922, 6, 133-144.
Lipphann, W. The Mental Age of Americans. New Republic, 1922, 32, a:3-$215,24^{6-248,275-277,297-298, ~ 328-330 ; ~ 1923, ~ 33,9-10 . ~}$
Locie, H. B F_{7} ed. Standard Classified Nomenclature of Disease. New York: The Commonwealth Fund, 1933. xviii +702 FF .

Marsur, C. J. Fuman Adaptability as Related to Age. Psychol. Bull, 1933, 30 , 5^{89}.
Marsh, C. J. Relizbility of Pesformance Tests with Adult Subjects. Psycho!. Bull., 1934, 35. 594.
Meim, R. Recherches sur les formes dintelifgence. Arch. de psychol, 1930, 22, 201-284.
Mearill, M. A. Intelligence of Policemen. J. Persan. Res, 1927, 5, 511-515. Miles, C. C. Age and Certain Personality Traits of Adults. Psychol. Bull., 1933. 30, 570.

Mines, C. C. Influence of Speed and Age on Intelligence Scores of Adults. J. Gen. Psychol., 1934, 10, 208-210.

Mites, C. Cn, and Mlues, W. R. The Corrclation of Intelligence Scores and Chronological Age from Early to Late Maturity. Amer. J. Psychol., 1932, 44, 44-78.
Miles, W. R. Correlation of Reaction and Coordination Speed with Age in Adults. Amer. J. Psychol., 1931, 43, 377-39.
Mrtes, W. R. Movement Interpretations of the Sillouette of a Revolving Fan. Amer. J. Psychol., 5931, 43, 392-405-
Mleess, W. R. Abilites of Older Men. Person. J., 1933, 1, $352-357$.
Miles, W, R. The Maintenance of our Mental Ablitics. Scient. Mo., 1933, 37, 549-552.
Mulus, W. R. Age and Human Ability. Psychol. Rev, 1933, 40, 99-123.
Mongentric, D. R. Some Well-Known Mental Tests Evaluated and Com. pared. Arch. Psychol, 19 22, 7, No. 52. 54 PP.
Mursell, G. R. Decreasc in Intelligence with Increase in Age among Inmates of Penal Institutions. J. Juv. Res., 1929, 13, 197-203.

Ooos, C. L. A Study of the Menalal Growth Curve with Special Reference to the Results of Group Intelligence Tests. J. Educ. Psychol, 2929, 29, 401-416.

Paursen, A. E. The Infuence of Treatment for Intestinal Toxemia on Mental and Motor Efficiency. Arch. Psychol, 1924, 11, No. 69. 45 Pp.
Pereason, J. Early Conceptions and Tests of Iotelligence. Yonkers: World Book Co., 1925. xuv +309 PP.
Pereason, $\zeta_{\text {, and Lasile }, \text { L. } \mathrm{H} \text {. Studies in the Comparature Ablaties of whites }}$ and Negroes. Baltimore: Willams \& Wilkins, 1929. vi +156 PP. (Mental Measurement Monographs, vol. 2, serial No. 5.)
Piéron, H. Theoretical and Practual Aspects of Intelligence. Brit. J. Psychol., Cen. Sec., 5933, 22, 353-358.
Pintmer, R. A Noa-Language Group Intelligence Test. J. Appl. Psychol, 1919, 3, 199-214
Pintner, R, and Paterson, D. G. A Scale of Performance Tests. New York: Appleton, rer7. $x+153$ PP.
Pintner, R., and Toops, H. A. A Mental Survey of the Population of a Workhouse. J. of Delinq, 1917, 2, 178-287.
Porteus, S. D. Porteus Tosts--The Vincland Revision. Vineland, N. J.: The Training School, s919. 44 PP .
Porreus, S. D. Studies in Menral Deviaruons. Vineland, N. J.: The Training Scbool, 1922. $x 1+276$ Pp. Pages $75-115$.
Portrus, S. D. Maze Tcsts and Mensal Differneces. Vineland, N. J.: Smith Printing and Pubtishang House, 1933. ix +2 r 2 pp .
Pressex, L. W. Sex Differences Shown by 2,544 School Children on a Group

Seale of Intelligence, with Special Reference to Variability. J. Appl. Psyctiol, 1918, 2, 323-340.
Pazssey, S. L., and Cole, L. W. Are the Present Psychological Scales Reliable for the Examibation of Adults? J. Absorm. Psfcbol, 19:8-19, 13, 344323.

Pxicz, D. The Grasping of Spoken Directions as an Age Function in idults. Psychol. Bull., 1933. 30, 588-58).

Ricusadosa, C. A. The Growh and Variability of Intelligence. Brit. J. Psychal., Monog. Suppl., 1933, 15, r-x3.
Rtciandson, C. A., and Sroves, C. W. The Growh and Vatiability of Intelligence. Brit. J. Psychol, Monog. Suppl, 1933, 18, 24-83.
Roarns, A. L. The Growth of Intelligence at the College Level. Sch. \& Soc, 1930, 31, 693-699.
Rocras, M. C. Adenoids and Diseased Tonsils; their Eftect on General Ineellgence. Arch. Psychol, 1922, 7, No. 50.70 pp.
Rucn, F.L. Adult Leaming. Psychol, Buil, 1933, 30, 387-414.

Schwesincer, G.C. Heredity and Environment. New York: Macmillan, 1933. viii $+47^{2} \mathrm{Fp}$.
Suanp, S. E. Individual Psychology: A Study in Psychological Mechod. Amer. J. Psychot, 1898-99, $10,329-391$.

Stmpson, B. R. Cerrelations of Mental Abilitiex. New York: Teachers Coliege, Columbia University, 1912. 122 pp . (Contributions to Edumtion, No. 53.)

Sorensov, H. Mental Ability over a Wide Range of Adult Ages. J. Appl. Psycho!, 1933, 17, 729-741.
Spearman, c. The Abilitics of Man, their Nature and Measurement. New York: Macmillan, 1927. xxiii +415 pg .
Symonds, P. M. A Second Approvimation to the Curve of the Distribution of Intelligence of the Population of the United States, with a Note on the Standardization of the Binet-Simon Scale. J. Educ. Psychol, 1923, 34, $65-81$.

Teagarnen, F. M. A Study of the Upper Linits of the Development of Intelligence. New York: Teachers College, Columbia University, 1974112 pp. (Contributions to Education, No. 156.)
Terman, L.M. The Measurement of Intelligeace. Boston: Houghton Miffin, 1946. xviii $+35^{8} \mathrm{pp}$.

Terachn, L. M. Mental Growti and the 1.Q. J. Educ. Psychol., 1921, 12, 32534 r.

Terman, L. M. The Great Conspiracy. New Republic, 1923, 33, 116-120. Teracan, L. M., et ol. A Trial of Mental and Pedagogical Tests in a Civil Service Examination for Policemen and Firemen. J. Appl. Psychol., 1917, r, 17-29.
Thompson, H. B. The Mental Traits of Scx. Chicago: University of Chicago Press, 2903. vii $+{ }_{188} \mathrm{Pp}$.
Thorndike, E. L. On the Improvement in Intelligence Scores from Fourten to Eighteen. J. Educ. Pspchol, 1923, 14, 513-516.
Thonndike, E. L. On the Improvement in Intelligence Scores from Thirteen to Nineteen. J. Educ. Psychol, 1926, 17, 73-75.
Thornoike, E. L, et al. The Measurement of Intelligence. New York: Teachers College, Columbia University. xxvi +604 pp.
Thornotikr, E. L., et al. Adult Learning. New York: Maemillan, 1928. $x+$ 323 pp .
Trumstone, L. L. The Intelligence of Policemen. J. Person. Res., I922, 1, 6474.

Thurstone, L. L.. Intelligence Tests in Civil Service. J. Person. Res., 1924, 2, 43:-445.
Thinsrons, L. L. A Method of Sealing Psychologieal and Edueational Tests. J. Educ. Psychol, 1925, 16, 433-451.

Thunstone, L. L. The Vectors of Mind. Psychol. Rev, 1934, 41, 1-32.
Tirvestone, L. L. L., and Ackerson, L. The Mental Growth Curve for the Bince Terts. J. Edue. Pspchol., $1929,20,569-583$.
Trabur, M. R. Supplementing the Hillegas Scale. Teach. Coll. Ree, 1917, 18, 51-84.
$V_{\text {an }} W_{\text {acenen, }}$ M. J. Graded Opposites and Analogies Tests. J. Educ. Psychol., 1920, $1 \mathrm{If}, 24 \mathrm{r}-263$.
Vitizles, M. S. Industrial Psychology. New York: Notton, 1932. xviii + 633 pp .

Waltens, F. C. A Statistical Study of Certinin Aspects of the Time Factor in Intelligence. New York: Teachers College, Columbia University, 1927. viii +84 pp. (Contributions to Fducation, No. 248.)
 Study. New York: The Commonwealth Fund, 1935. xvi +623 pp. $W_{\text {rils }, ~ F . ~ L . ~ A r m y ~ A l p h a, ~ R e v i s e d . ~ P e r s o n . ~ J ., ~ 1932, ~ 10, ~}^{121-417 .}$ Whipple, G. M. Manual of Mental and Physical Tests. Part II, Complex Processes. $3^{\text {rd }}$ ed. Balciunore: Warwick and York, r921. 336 Pp. Willoughbr, R. R. Famaly Sirmlarites in Mental-Test Ablities. Genct. Psychol. Monog, 1927, 1, 237-277.

Wilson, W. R. Information as a Measure of Intelligence and Maturity. J. Edue. Psyctiol, 1924, 15, 309-312.

- Wisslen, C. The Correlation of Mental and Physical Tests. Psychol. Rev, Monog. Suppl, 290t, 3, No. 16. 62 pp.
Wood, B. D. Measurement in Higher Education. Yonkers: World Book Co, 1923. $x \mathrm{i}+334 \mathrm{pp}$. Chapter II.

Woodwornit, R. S. Computing the Standard Deviation and Probable Error of a Binet Mental Age. Psychol. Bull, 1928, 25, 167.
Wortumgton, M. R. A Sudy of Some Commonly Used Pefformance Tests. J. Appl. Psychol, 1926, 10, 216-227.

Yerkes, R. M., ed. Psychological Examining in the United States ArmyWashington: Government Printing Office, 1925. vi +890 pp . (Memoirs of the National Academy of Sciences, vol. 15.)

INDEX

Abelson, A. R., 8
Absolute scaling, Thurstone's methed of, 17, 28-19
Absurditurs tests, 52, 55, 62, 91-93, 96, 119, 124, 134-138
Acketron, 1., 17, 18-19, 26
Adaptablity in relation to age, 31, 77
Age in relation to test performance
basic requirements for rtudy of, 17, 32
changes in score with age, $4,15-25,29-$ 32, 72-77, 92, 106, 307-109, 125-126
changes in varrabiltty with age, 19, 20, $26-27,75-76$
Fraki of performance, 26, 18-22, 23-75, 29-32, 72-77, 105, 207-109, 125-126
See also Correlations, with age
Age levelt of subjects examsned, 42, 42, 4445. 59

Analoget tets, 22, 26
of the Army Alpha, 8, 24, 26
used in this research, 52, 54, 55, 69, 70, 73, 74, 75, 76, 77, 78, 82, 83, 86, 87. 83, 89, 91-93, 95. 96-99, 100, 101, $103,106,107,109,119,120,124,126$, 127-128, 130-133
Aagier, R. P., 7
Antonym. ynongym tests. See Opposites terts
Aphasic disorders, 127-129
Anthmetic reasoning teets, 22, 26
of the Army Alpha, 8, 15, 24, 25, 26
used to this research. Sfec Anthmebe tests, Stanford Reasoning
Arithmene tests
Stanford Computation, 53. 55, 64, 66, 70, 73, 75, 76, 79, 83, 84-85, 88, 93, 94, 95. 97, 99, 99-100, 103, 105, 112, 113, 115, 116, 124, 128, 139
Stanford Reasoning, 53, 55, 66, 70, 73, $75,76,83,84-86,87,88.93,95,98$, 99-100, 103, 104, 113, 114,116, , 19 , 120, 124, 139
Arlut, A. H., 35
Army Alpha Test, 2, 7. 8, 22, 25-29. 53
Brigham's criticimm of, 10-52
estomate of value of, iz
Joncs' and Corrad' resutu on, 23-27
median seores for the Army draft, 9 , 10 ,
scores in relation to Stanford Bunet

Army Alpha Test (cont.):
sub-tests, 8, 11
growth curves for, 22, 24-26
sex differencer on, 14-25
See also Analogice tests, of the Axmy Alpha; Axthme ue reasoning tests, of the Ariny Alpha; Directions tests, of the Army Alpha; Disarranged Sentences Test of the Army AJpha; Inforganon tests, of the Army Apha; Number Series Completion Tess of the Army Alpha; Opposites tests, of the Army Alpha; Fracuca! Judgment Tese of the Army Alpha
Teagarden's sesults on, 17-18
Army Beta Test, 8, 22
Army data. See Intelligence testing, in the Army
Army test a. 8

Ballard. P. B, 52, 134
Earr ratigg
for occupations with median Army Alphz scores, 4^{8-49}
for subjects examined, 40, 42-43, 44-45. $50,69,72-74,76,102$
is relaton to test performante, 83, 87, 18
Bectan, M $\mathrm{F}_{4}{ }^{16}$
Bell, J. C, 6
Bernerewer Personality Inveatory, 32
Broet, A, 4-5, 7,8
Duact-Surnon Scale, 6
Bughtam, w. V, 6, 8
Bonser, F C, 8
Engham, C. C. 1, 7, 10-12
Brolyer, C. R, x_{4}
Brooks, F. D., 15
Burr, E., ${ }^{3}$

Caldwell, H H, 15
calice, M, 6
Cancellarion test, 53, 56, 68, 88, 140
Canothers, F E.,. 6
Carter, HI $_{1} \mathrm{DH}_{1}{ }^{14}$
Catell. 1 McK., 3, 4-5
Catell. R. B, 13
CAVD Teste $20-21$

Cercbral lesion exes, 127-129
Chapman Readiag. Comprehension Test See Reading tests, Chapman
Chi-Square determinations, 86-87, 113
Columbian Exposition, prychalogical Labo1atory at, 4
Compleuon Exercise Deta, 53, $5+$-55, 57, $70,73,74,75,75,78,83,86,87,85$, 91-93. 94, 95, 96, 99. ron, rer, to3, 104. 105. 118, 119, 123, 127, 133

Conn, J. C. M., 3^{6}
Contad, H. S.4 2, 14-15, 16, 22-17, 30, 31, 108
Cortelations
general discession of inter-test correlations, 115-121, 137-529
with 2ge, 30, 31, 73, 75-80, 82-83, 5\% 105, 107, 108-109
with arithtreve tegta, $98-100,120$
with Bart ratings, $8_{3}, 87,118$
with Completion Beta, 93, 159
with education, 79-80, 53-86, 110-112
with Goodenough Drawing, 100-101, 121
with Pintarer Non-Langugse 300, 1 xo t21
with Poreus Alaze, 101, 119, 1 20-121
with Printed Analogies, $96-99$, 120
with speling tests, 95 -96. 119
with Seraford Brate, 62,88-93, 119
with Thorndike MoCall Reading. 95. 119
wih vocabulary tests, 93, 95, 119
Cowdery, K. M, H_{3}

Dawson, S., 36
Decline of incelligence. See Age ia refation to test performance, changes in wore with age
Digit: symbol substutution tesss. See Sulstitution tests
Directions tests
of the Army Alpha, 8, 15, 74, 25, 26
Pintarer.Tops, 52, 55, 62, 133
Disarranged Sentences Test of the Army Alpha, 8, 24, 26
Discrimunative power of tests, ro5-1n6, 116, 124
Discase in relation to interligence, 34-36, 41-46, 122-123
Distribution of intruligence in adults, 8-9, 54
Drawing a chair, test of, 53. 55, 68, 69, 78, 119. 125. 140-14x

Drawing a man, test of. See Goxdenough Drawing Scale

Drawing Completion Tesc. See Pintarer NoaLanguagr Test, Drawing Completion

Easy Learning Tese Sce Pintacr Non-Language Test, Easy Learning
Ebbioghaus, 1H, 5
Education of subjects examined, 40, I1 $_{1,44^{-}}$ 46, 69, 7a-74. 76
as a factor in test performance, $\mathrm{B}_{4}-\mathbf{8 G}$, 110-118, 136
Sece elto Correlations, with education in retation to Army data, 49-50, roz, $12 \star$

Farrand, Le. 4
Fcrmald, ML, R., 35
Fither, R, A., 72, 79, 82
Fotter, I. C., 16
Freemin, F. N. 15
Fry, F, D. 16
Fryer, D., 23, 4^{4}

Gaiton, Fr, 3, 4
Gartert, H. En, $\mathbf{1 3}^{-14}$
Gates, A. 1. 138
Gates Oral Spelling Test Sce Spelling tests, Cate
Gaw, F, gt
Gilbert, J. A, 4
Clandular disorders in relation to inteltr. gence, 34,35
Coddard, H. HL, 6, 8
Coodenough, P. L. 90,240
Goodenough Drawing Scale, 53, 56, 68, 7^{0}, 83. 84, 50, 100-101, 103, 104. 115, 121. 125. 141

Grace, A. G., 74-75
Gayy Oral Reading Teste See Reading tests, Gray
Growth of inteligernte Sce Age in redation to. test performance, thanges in score with age

Hines, T: H. 8
Hall, G. S. 16
Hand Learang Test. Sey Pintacr Non-Lan. Euage Test Hzrd Learning
Hear, V. in^{-5}
Hospinal grouph comparative findings for, 41-44. 45. $102-104$
Housewives, Bart ratings for, 44, 49,69

Hsiao, H. H., 14, 23, 25

Initation Test, See Pintuen Non-Language Iest, Imitation
Inmediate Recall Test of the Kuhlmann Buret. See Kuhlmann Test of Immediate Recall
Information tests, 22, 26
of the Army Alpha, 8, 15, 24, 25, 26
Intelligence testing
development of, for adult groups $1-8$
early types of test, 3-6
it the Army, 1, 7-12, 16
charactep of the sample, 8-10
group chosen for stitistical analysis, 8
median tese scores, $9,10,13$
See alfa Army Alphz Test
in college groups, 3-7
in industry, 22-23
intestanal disorders in telatoon to sotelligance, 35, 44-46

Jastrow, J_{4} 3-4
lones, H. E., 2, $14,76,22-27,30,31,108$

Kelley, T. Li, 1, 11, 25, 78, 127, 129, 133
Relliy Trabue Completron Exerase. See Completron Everessa Beta
Kiggsury, F. A., 22
Kitron, H D. 6
Kollints, I, 34
Korahauger, A. W., 12
Kuhlmana Test of Irrimedate Recall, 53 , $56,68,69,70,73,74,76,79,80,84$, 103, 105, 140

Learning in relatwon to age
Miles' findings on, $3 x$
Thorndike's finduggs on, 36,21
Letter wning. See Wriung a letter, vest of
Linut of mental growth See Age in relafion to test performance, peak of performance
Lincoln, E. A., 9
Lippmanz, W., 9

Mare and Foal Test, 53, 56, 66, 73, 75, 76, $82,104,107,108,139$
Marsh, C. J. 3x, 109
Maturity Study at Stanford. See MEjes, C. C-; Miles, W. R

McBride, K. E. 34, 124, 130
McPhall, A. H, 7
Mental-age method, criticism of, 17, $304-$ 105
Mental dechnc. Sec Age is relation to test performance, changes in scere widh age
Mental growth. Sce Age in relation to test performance, changes an score with age
Miles, C. C., 2, 15, 28-32, 37
Mutes, W. R, 2, 15, 16, 27-32, 37, 108-109
Morganthau, D, 88-89, 90, 100
Morrison McCall Spelling Scale. See Spelling tests, Morrison McCall
Mulaple correlations with Stanford Binet, 91-93
Mursell, G. R., 23, 30

Negro strbjecte, waret of, 9,40
Norms of group exammed, 55-56, 102, 123
Number Serses Completion T"est of the Atmy Alphs, 8, 15, 22, 24, 26

Occupatoon of subjececs examined, 42-44, 69, $72-74,76$
in zelatuon to Army data, 46, 48-50, 202, 122
in ielation to Censes Fgures, $46-48$, 102, 122
in relauon to test performanee, Sece Bart ratuoge, in relation to test performante; Taussig ratagh, in relation to test fer. formance
Odum, C. L., 10-20, 21
Opposates tests, 22, $\mathbf{2 5}, 26$
of the Ariny Alpha, 8, 24, 25, 26
of the Scholasme Aptutude, 7, 25
used in thus research, 52, 54, 55, 70, 71, 130
Oral reading test, Ser Reading tests, Gray
Oral spelling test See Spelling rests, Gates Orthopedic conditions in relation to ineell $h_{\text {- }}$ gence, 35, 44-46
Ois, A. S, 8
Ots Self-Admusustening Test of Intelligence, $2,15,28-32,109$

Pyuisci, A. E, 35
Picture Reconstruction Test. See Protner Non-Languge Tete, Puture Retormruction
Pintoer, R., 16

Piomer Non-Language Tent, 37, $50,53,56$, 67. 68, 70, 71, 73, 75, 76, 77, 79, 83. $83,86,87,88-90,91,93,96,97.98$, 99, 100, 101, 103, 107, 109, 213, 115, 116, 15S, 120-121, 124-125, 126, 139${ }^{12}{ }^{\circ} \mathrm{c}$
Drawing Completion, 56, 68, 69, 70, 89, 93. 99, 100, 101

Eary Learning, 56, 69, 100, 105
Hard Learning, 56, 68, 70. 89, 99, 100, 108, 121
Imitation, 36, 68, 70, 89, 59, 100
Picturt Reconstruction, 56, 68, 7a, 71, 8g, 99, 100
Recred Drawing. 56, 68, 70, 89, 99, 100
Pintner Paterson Sale, 66, 105-106, 124 , 139
Sere alro Mare and Foat Text; Seguin Test; Substirution ters, Pintacr Paterson
Pintaer-Toopa Revised Diretions Tert Sce Directions Tests, Pintacr-Toopa
Porteus, 5. D., $9:$
Porters Maze Tert, 40, 53, 56, 67, 68, 70, 73, 76, 79, 80, 81, 82, 83, 86, 87, 9091, 93. 94, 98-99, 100, 101, 103, 104, 107, 118, 119, 120-125, 126. 141-142
Practural Judgment Test of tre Asmy Apha, 8, 24, 26
Pressey, L. W. 14
Price, B., 31, 103

Race of subjocter cmarminel, 40
Reading tests
Chapman, 5I, 33, 55, 63, 70, 83, 84-86. 88, 93, 95, 103, 104, 119, 124, 138
Gray. 53, 55, 62, 70, 71, 84-85, 93, 103. 111, 124, 133^{5}
Thorndike MeCall, 51, 53, 55, 62, 63, 70, 73, 75, 76, 79, 83, 84-85, 87, 94, 95. 101, 103, 104, 113. 114, 116, 115,119, 124. 127,138

Relatisity of tesss used, $5 x, 56,63,6 \% 65$. 104
Reversed Drawing Tert. Sec Puntier NonLanguage Test, Reversed Drawng
Ruchardson, C. A. ig, 31
Rucger, Cos 5
Rogers, A. L, 8, 26
Rogers, D. C. 7

Schol2sis Apurude Test, 7, 14, 25
Schuesinger, G. C., 34
Seguia Test, 33, 36, 66, 70, 73, 74, 75, 75, $77,82,85,105,107,108,119,139$
Senrence Completion Tert. See Completion Exercise Ikts
Sex differences in tert performance, 13-15, 69-71, 74, 79-80, 106-107, 127
Shzrp, S. E, 5
Simod, Thi, 7
Sparmisa, C. 1, 11, 25, 127
Speed in test performance in relation to 2 g , 30, 31, 108-109, 126
Spelling tests
Gates, 51, 53, 55, 62-63, 70, 73, 75, 76, 79, 83, 84-86, 87, 95-96, 101, 103, 111-112, $119.124,138$
Morrimon Mceall, 51, 53, 55, 62-64, 105. 124, 139
Stanford, 53, 55, 62-65, 70-7t, 73, 74, $75,26,83,84-86,95-96,103,112$, 113, 114, 216, 119, 124, 139
Stapord Achissement Arithrnetic Tets. See Aribmedic tests: Sunford Computation, Sunford Reasaning
Stanford Achievemett Dictation Test See Spelling terst, Stanford
Stanford Bintet Salt, 8, 9, 17, 15-19, 21, 37, 44-46, 51, 52, $51,55,56,55-62$, $69,70,73,74,75,76,83,84-86,87$, $89-93,96,99,100,101,103,104$. 110, 212-116, 128, 119, 120, 133-134
Sucford biner Vobbulary Test See Vor cibulury tests, Stanford Bunct
Stoles, C W W_{4} 29,21
Stort, C LL, 7
Subjects examined
criveria for selection of, 34, 36,123
examiner's approach tis, 37-39
medical dixgrosis of, $35-40$
sources for, 33-34, 122
Subsuturian testen, 22, 26
Pimmer Paterson, 53. 56, 66, 70, 73. 75. $76,77,82,86,105$. 107, 108, 139
See alro Pmomer Non Language Test:
Easy Learuing. Hard Larning
Symandis. P. M. 9 -10, 4^{3}
Syponym-ratanym tests. See Opposites tests
Syphalis in refation to intelligence, 34, 35

Taussig ratings, 42-44
in wriation to est performance, 86-87, 158, 126-127
Taylor, G. A, 15

Teagarden, F. M, 17-18, 23
Terman, L. M, 8-9, 16, 42, 133
Tests, basis for selectoon of, 51-52
Thompsot, H. B, 13
Thorodike, E. L, 16, 20-21, 24
Thotndike McCall Reading Scale. See Reading tests, Thorndike McCatl
Thoradike Test of Word Knowledge. See Vocabulary tests, Thorndike
Thurstome, L. L., 8, 17, 18-19, 21, 26-27, 127
Tutchener, E, B., 5
Toops, A., 16
Trabue, M. R., 139
Tuberculosis ia selzion to intelligence, 34 , 35

Van Wagenen's Anzlogies Testr, 52, 130
Varabiltry, 32
in performances of the individual, 71, 788I, 109-120, 127
in sex groups, $70-71,107$
in total groug, $55-56$
See alio Age in relation to cest performance, changes in vanabulty with age
Viteles, M. S., is
Vocabulary terse, 22, 26, 54

Vocabulary tests (cons.);
Sunford Biner, 40, 52, 55-56, 57, 70, $73,75,76,78,83,86,87,91-93,95$, 96, 98, 103, 104, 118, 119, 124, 127, 133
Thorndike, 52, 55-56, 58, 69, 70, 73, $74-75,76,77,83,83,84-86,91-93$, 95, 96, 98, 100, 101, 103, 104, 107, 110-111, 113, 114, 116, 118, 119, 120, 124, 133

Walters, F. C., ss
Waugh, K. T., 6
Wisenturg, T., 34, 124, 130
Wells, F. L, $8,12,25$
Whipple, G. M, 8, 52, 134
Willoughty, R. R, 16, 21-22, 25-26, 30, 35, 108
Wulson, W. R, 25
Wissler, C., 5-6
Wood, B. D., 6
Woodworth, R, S, 8, 58
Worthugton, M, R, gr
Wriang a letter, test of $33,55,66,69,70$, 79. 139

Yerkes, R. M, 1, 8, $\mathbf{1 3 4}$

[^0]: ${ }^{2}$ T. Weisenburg and K. E. MrBribe, Aphania- A Cinical and Pyrhologrical Sfudy.

[^1]: *R. M. Yerke3, Psyefological Exammang the the Uaited Stater drmy. Mern Nat. Acad. Ski., 1931. 15 .

 2T. 1. Kelley, Crossroads in the Mind of Msn, 1923. 215

[^2]: 6. Na, 46.

 It She called this comporite score -Inteligence quationz."

[^3]: ${ }^{18}$ The tests are not avaulab'c for reference, but yearly zeports are published; the reports through 1931 are reprinted an C. C. Hrigham's book, \boldsymbol{A} Srudy of Error.

 18 A. Biset and ITh Sapon, Ser la necisuré disuc nuthode applncable ant dagnostre des arfritces mitiaires, Anonles mediun-prychol, 1910, 11, 411-45y.
 ${ }^{20}$ Anoaymous, The Expentate of the Germant Army with the Defective and Feeble. minded, J. Psycho-Asthenics, 19:1, 16, 68-76.

[^4]:
 24 E. A. Tincoln, The Arrial Age of diults. J. Faluc. Res. 3917, 6, 133-14;
 25 W . Lipmann, The Aenal Age of Americams, New Repubitc, 2922. 32, 213-215, 246248, 275-277, 297-298, 328-330, 1923. 33, 9-10

[^5]: 24 P. ML Symonds, if Second Afiromination so the Cutre of the Distnimion of titelthgente of the Populition of the Unitiest Srater, winh a Note on she Sitrdurdiaction of the Einef Sinton S-aic. I. Educ, Psjchol., 1923, 15.65-81.
 ${ }^{2}$ Briskam, A Study of Americra inseligence.
 1: Brisham, Intelligence Tent of Jmmigrant Growpi, Psphrit Rew, 2930. 37. 155-165.

[^6]: ${ }^{23} \mathrm{Mcm}$. Nat. Acad. Sci., 19z1. 15. 62z
 In determiang incereclationshisps betwren the tests, the effects of the piting up of zero scores in cerain of the sub testg were discounted by suxusucal procedures phich redistributed these cases ta accordance with the normal comelaion surfice Thus proctdure, of course. did not adust the total score for any ndiundul.
 ${ }^{20}$ Brigham, A Study of Error, 38.

[^7]:
 12 A. W. Korbhaumer and F. A. Kimghury. Pschologics Ters in Busikess, 1924.

[^8]: ${ }^{3}$ For stadies in thus firld. ser:
 J. Aypl. Psychol . 1923, 6. $311 \mathrm{l}-3,30$.
 197种3. 107-211.

 23 R. B. Cattell. Ociupational Norms of Intelligence and the Standardizabron of an Adule Intelligence Test, Brit. J. Psychol., Gen Ser, 1934-35, 35. 3-28.
 *3 The sub-rests were gyonyms, classification, opposites, completion, and inferences-the typer of performance which had, in Cartell's opinan, been shown to correlste most highly whth "g" without overlap.
 ${ }^{57}$ H. B. Thompson. The Meatat Truter of Ser. 1903.
 *A EI. E. Garreti and M. R. Sctineck, Psychalagical Terss, Methodf, and Remults, Part It, igs.

[^9]:

 to C. R. Brolyer, Fifh-Nisth Efperts of the Commirnian on the Seholartic Aprinde Test, 1930-1934-
 Monoge 1932, 12, 1-104-
 $12 O_{p}$ cy. 265-266.

[^10]: 14 Conrad and Jones, Psyehologicel Srudies of Bation Pictryres V. Adotescent and Alult Sex Differences in 1 mpted ate and Dolayed Recall. I. Sac. Psjchol., $1931.2,433-459$.
 $4 \approx$ Op att. 64 .
 4\% Sce pages $31-32$.
 ${ }^{17}$ For disatssion of the eariser contributions, see F. N. Freemen, Mental Terts, 1926 , chap. XIII, and F. D. Brooks, The Fsycholagy of Adoletcence, 19土9, chaps. IV and V.

[^11]: 43 Most of theac studuts are on selected groupt, which are dincult to locate in the populahon at large and will not be discussed in this chapret. If a suffient aurnber of nech groups were studued by comparable methods, they would, of course, be soluable as eompotient parts of a larger popolation which coold be treighted to approximate that of the ceasus figures.

 For examples of these special studics, the reader is refetred to the following articles:
 H. H. Caldwrell, Adulf Terts of the Sainford Revisiont Applied to L'airemply Faculty Mem Sers, J. Exper. Psychol, 1932, 5, 247-263.
 2. Fintser and A. Toops, A Mertal Suricy of she Popsulation of a Jorkhotse, J. Delitaq, 1917.2,228-287.

 In ML. Terman, et al., A Trial of Mensyl ond Fedagogical Tests in a Curil Serkice Exsmunztion for Foficemen and Firemen, Appl. Pspchal, 1917, 1, 17-79.
 F. D. Fry. The Correlation of the Reverte Auduta-Vocil Dugit Memary Span with whe Gerera' Inselligense and olher Monsti Abitics of 308 Prisoners of the Easern State Panjtentizy of Pennaylugana, Psycliol. Cun, 1931, 19, 156-164.

 * There were a few early studies of senile decline, notahy thase by Beeson (Inteligerfee af Senescence, I Appl. Psychol., 1910, 4, 2r9-234) and Foster and Taylor (The Applicebiluty of Airntal Tess to Persons over Fifiy Yeprs of Age. J. Apph. Pryction, 1920. A, 35-58); but the applatation of the findings has been limuted by the Gate that the groupt were selected. Interestiagiy toough G. Stanjcy Hall dud not meadion these two papers is hu large voluate on Smes. cente in 1922. perhaps because be dud not conssder the existing mrntal tests appicable to adults. He wrote: There are no mencal tests of generilly recognized valadity above the teens, so that we have no criteria for determining psychologyat age for even the elderly . . ." (page 196).

[^12]: ${ }^{60}$ L. L. Thurstane agd L. Actersom, The Mental Graroht Corve for the Brnet Trest. J. Educ. Psychal, 1929, 20, 569-5年3-
 ${ }^{51}$ Thurstone, A Method of Snding Pyy-holograd and Educanonal Terrr, I Educ Psychole, 1925, 16, 433-453.

 52 F. M. Teagarden, A Study of the Uficr Limuls of the Derelogment of Intelligence. Teach. Coll. Contri to Educ., 1924 . No. 15^{6}
 os If the discributions were ${ }_{\mathrm{x}}$ as T'eagarden believed, approximately normal, means and me. drans would not differ apprectably

[^13]: 4E Most of these atudies are on selected groups, which are duffevte to locate in the population at lagge and oill not be discussed in this chapter, If a sufficicot oumber of such groups were studied by comparable methects, they would, of course, be valuable as campoazat parts of a larger poputation which eould be wetghted to approximate that of the censur figures.

 For examples of thase ipecial atudes, the reader is referted to the following arrisles:
 H. H. Caldwell, Admlt Terts of she Sranford Eerision Applixd no Univerthty Taculiy MemBers, J. Exper. Psychol., 3922, 5. 247-262.
 R. Flatner and A. Toops, A Mental Snatey of the Foputation of \& Workhouse. J. Delinq, $1917.2,278 \mathrm{~m}$ 287.
 L. M. Terman, et al., A Triat of Menfal and Pedagogical T'enz in a Civil Sertice Examina. fion for Poluenten and Firemern, I Appl. Psychol., 19:7, X, :7-29
 F. D. Fry. The Correlstion of the Reverst Audtio-Voed Digur Memary Span with ithe Ceneral Intellgence and ofher Mienfal Ablifict of 3 os Prironers of ihe Eattern Stare Penisentiary of Penasylvania, Psychol. Clin, 1931, 19, 196-164.
 ${ }^{49}$ There were a few early studnes of senile decline, notably those ty Beeson (intelligence af Senescence. J. Appl. Psychol., 1920, 4, 219-234) and Fonter and Tayior (The Apphicabihty of
 application of the findugs has been lumired by the Eact that the groupa were selected, Interestingly enotgh G. Stanley Half did not mention these two papers in hast latge volume on Serrescence in 1972, perhaps because he did not consider the existing meatal rests applicable to adults He wrote: "There are no meatal testr of generally recogriacd validity above the teens, so that we have no criteria for detetrining psycholagical age for even the elderly . . " (page 196).

[^14]: ${ }^{30}$ L. L. Thurstone and L. Ackerson, The Mental Growrh Curve for the Biret Testr, J. Educ. Puychol, 1929. 20. 569-583.
 ${ }^{61}$ Thurstone, A Mechiod of Scaling Phyhhologacel and Eduratoonal Tests, J Educ. Psychol, 1925. 16.433-451.
 ${ }^{52}$ F. M. Teagarden, A Study of the Upper Limuts of the Deselopment of Intelligence, Teach Coll. Contt to Educ., 1924 . No 156 .
 ${ }^{\text {bs }}$ If the distributions were, as Jeagarden behevef, approximately normat, means and me. dians would not differ apprecably.

[^15]: "t Age groups above eighteen were omuted because they were small and probably selected.
 " An analysis of the Stariond Binet along the same lines as this analysis of the Alpha easts some doubt on Teagarderi's condusion that "the stopping place in the curve is reached earler in Alpha than in the other texts" (page 62), since the most reliable rise in the Binet occurs a year earlier than wat in the Alpha-

[^16]: ${ }^{84} \mathrm{Of} . \mathrm{art}_{\mathrm{H}}$ 569-583-
 ${ }^{51}$ C. A. Richardson and C. W. Stokes, The Grownh and Weriabitity of Intelligence. Brit. J. Prychol., Monog. Suppl., 1933. 16, 1-83
 ${ }^{58}$ The growth eurves for the separtite atems were also G curves, but most of them showed a singht kink comewhere between nune and a half and thatten and a balf,
 ${ }^{50}$ C. L. Oduni, A Srudy of the M/ental Grownth Curve with Sperral Reference to the Results of Group $7 n+$ ilhgence Tests, $]$ Educ Psychal, 1929, 20, 401-416.

 Different tests were used at differeat agres, the total senes including the Dearborn Scale, Series I and II; the Ons Group Scale, Prmary and Advansed; the Illnois Group Intelligence

[^17]: -3 Thorndike, Adult Learnarge 129
 443bl , 206 204i 154.
 -5 R. R. Wiltoughby, Tammly Sumbanier an Mental-Test Abdifies, Genet. Psychol. Monog, 1927, 2, 239-277.

[^18]: 60 Willogghby's curses are continucd to sixty yeart.
 ${ }^{57}$ Op. Cif_{-4} 223-298.

[^19]: ${ }^{15}$ A further indication of differental gam appears in a wrudy of the growth of intellifence at the college level by Rogers at Brya Mina. (TAc Cranth of Intelligence at the Colfege Letel. Sch. \& Soc., 1930, 31, 693-699.) She found the most marked gain in readigg ability.

[^20]: so Mates of ett, 109.
 2\% The difference is even more marked if the eomparison is limited to those of Miles* subjects who were within the age range of dhe Army thafto

[^21]: ${ }^{53} \mathrm{Op}$. cit, 60
 ${ }^{54}$ The findings are given for Ciry B only; the age range in Cisy A was much sharter, from fifty to ninety years.

[^22]: © See also Mursell's simular finding. footnote 70, page 33 -
 to Miles, of, cif., 116 .
 at C. C. Miles, Influence of Spord and Age on Intelagence sores of Alwiff. J. Gen. Psychol_ 193.4. 10. 208-210.

 Another inreresting finding is reported in this praper. After noting that in 2^{11} populatwons the average indaridual loses at the rate of aboart six or seren montha mental age per deade, Mijes stated that decreases wete apparendy similar if indinduals were retated. This findug for the 190 individuals tested in 1930 a0d retested in 1932 is important even though the iest was brief, for there hase been very few retests of adults.
 ${ }^{\text {E }} O_{P}$. तit. $1 \times 6-15$.

[^23]: ${ }^{50}$ Ibad., $112-114$.
 ${ }^{50} \mathrm{~B}$ Price, The Grasping of Spolem Directrons as an Agz Function in Adulty, Psychot. Bull., 1933, 30, 588-589.

 92 C. I Marsh, Human Adaprathiny as Eelated ro Age, Psychoil Bull, 1933. 30.589

[^24]: *2 Srudred by the kineptiantom, at rewalving fin the salloucte of whith the subject had to interpret; see W. R. Miles, Movernenf Jnterpretations of the Silhoucthe of a Revolving Fan. Amer. J. Psychot, 993 I, 43, 39x-405.
 ${ }^{38} \mathrm{C}, \mathrm{C}$ Miles, Age and Cerisin Personaluty Traits of Aldults. Psychol. Buil, 1933. 30. 570.

[^25]: *M. R. Fernald and A. H. Arlitt, A Pryrhological Study of as Grouf of Crippled Chitden of Variors Types, Sch. \& Soc. 1925, 21, 449-452
 Efficiency, Arch, Psychol $=1924$, 11. No. 6g.

[^26]: - S. Dawson and J. C. M Cana, Intelligence and Ditare, Med. Research Conncil, Spect Report Serics, No. 162, 1931.
 T Work was begun at the Orthopedse Hoppral where a number of putuents were examised

[^27]: Who ddd not meet the requrements for selection whach soon had to be laid down. These patienrs were elimmated from the group, bat when the final calculations had been made and the complere hospital records were agaus checked, it wes found that the group sall included 9 patents who did not meet the rigd requiremens: z of these pavents were being treated for
 and 4 were eases of tuberculosis of the bone of gont The mean score on the Staniord Baber Scale for these g patients was $16 x$ and the mean scone on the Fiazner Non. Language Meatal Test 346 . Since the means for the tozal group on these two tests were 364 and 356 zespectively, and since the group of g fell close to the sverage of the total group on the other tests as well, it seerned clear that the inelusion or exelusion of therr records would not affect the results materially.
 ${ }^{3}$ The patients gave various reasons for refiasing Some thought they were too sick: some had familes who would not approve, and some simply "dhd mot want to be bothered."

[^28]: disentes of the skin
 3
 Due to infection: carbunculus I
 Due to trauma or physical agents: shird degree burns of legs . . I ulcer of leg

 All cases at the Orthopedic Hospital and two at the Graduate Maspital were examined by Mrs. Gardiner, the remaining cases by Dr. Roe.

 10 The terminology and form of the classifiention are those given in a Siendard Clossifed Nomendittare of Discase, H B. Logir. ed. 3933.

[^29]: ${ }^{17}$ At the time of examination, a year before this diagaosis was anade, the dugrosis was "chronic intestinal obstructiono"

[^30]: ${ }^{13}$ A Niegro group studied by the same methods numbered only 15. and it has not been considesed worth while to report the resuins for such a small group in detrit. In vicw of the fact that there are few stadies of adult Negroes, bowever, several important findings are worth summariaing. It must be noted that the hospital seems to alford a grod solucion to the problem of securing comparable groups of whites and Negroes in the adult period. for the patients admitted to the wards of moss hospicals, whecher wey are white or Negro. axe likely to be derived from closely similar leaels of the population. The probability that the groups will be comparable is particularly bigh when the sudies are made is a ciry horpiat, lake the Philadelphis General, or in a hospital hike the Graduate which scryen a district containing a large proportion of Negrocs of various emonomic strata.

 The mean age of the Negro subjects, is male and ifemale, was 40 years. The mean school grade cornpleted was 6, and the mean octupational rating on the Barr Scale 7.13. These two figures may of course reliect inequality of opportunity between che Negro and whe white, but in any case the Negroes were inferior on alt the chief tests cxcept the Porteus Maze, and sig. nuficandy inferior on some, norably Ibe Puntarr Non-language Test and the Sunford Binet Vocabulary. The superionty of the Negroen on che Porteus Maze was not statistically signifi. cant, but it is $2 n$ interesung difference, which bas not, to the knowledge of the authors, beea reported by other investigatore.

 The Negro subjects cooperated even more fredy than the whire nubjecte. They were inmedately and obviousiy interested in the tests and they wete apparently less self-conscious than the white subjects.

[^31]: 40 The Sanford Binet and the Pintner Non-Language reptecent only two of the large nutnber of texts osed in the trudy, but are culforent far this bricf compacatize sutsey of the menta! terela of four diagnostic groups.

[^32]: US, GoviPrinting Ofice, 1933. Tabe 1x, 2412-1415
 for the nature+whe males, the astre. white females, and the total eative whate fogulation Dasa for the foreign born were discrided trecauce there wete only fire fareigy bous in the trett group and there were all matires of Engtuh-apeaking monntriet and groksly better cimed with the native-white than with the foregn-bora propolations

[^33]: 75 The masting of most of the women as houticwives at a Daft rating of $\mathbf{A . y T}$ is the chicf factor in the rise of the mean for the toral group over that ton the men only. Ai noved before. thit in an unsumpatory ming for the bouscwives. In as probable chat the mesto for the men is more cruly representative of the level of the group.

[^34]: ${ }^{23}$ The tert group, as coted abore, concrined fire foreign-bora subjectr, but these were all from English-ppeaking coustries and nearer the general level of the natirewhite than of the foreign-bora population.
 ${ }^{20}$ The statistics for the Army are derived from Table 302 of the Merr. Nat Acad Sd, 2921, 15, 75 3.

[^35]: 1 The fact that the tests were selected primetily for the atudy of aphasia tesultat in the ise dusion of tests whith nould not have been choren for 2 rudy of adute tacelligence alone. (The battery tised with the non-aphasie adules incturded the Stanford Bunt Scale, only a few separate tests of wheth were employed in the atody of aphasic patients) There were ins. cluded, first of all, tests for aperfic processer, wuch to the partuculaz readigg ablition analyzed by the Gatea Tests of Visual Perception and Selecton. Performances on these teats ase tntereating in cases of aphasix where readong diflizulurs are pronouneed but comparatirely uninterest. ing in cormal adults, and results of such tents will not be prezented. Sciondif, since ihe un. derstanding of spoken languge gind of printed mareral ss sametimes unertually disturbed in eases of aphasia, both oral and prated forma of several terta were arrangetl Both forma wete given to che normai contril group, and the irvits are imported in thes tady Thirny, in view of the aphasic limitations in speaking and wnang, whas nexessary to unclude testy wheb
 sponsc. There are two cases in point here fint, the use of both the Mornson MiCall Suclling Scole, 3 word ductation test, and the Gatez Oral Scelling Tent, and, kcond, the une of the

 bal rerponse. simply by fointias to the iscorrect ward

[^36]: 2 For sources and for construction and content of neve restr, see Appendix.

[^37]: - Athough no regular order was set up for all the tests, sorme parocular rules were observed: where both oral and priated forms of a test wrre being ased, the oral was given first; and the Pinmer Non-Language Test was giren before the Digt-Symbel Substatution of the Pintarr Paterson Scale.

[^38]: 77.56 and Iive $2,26.34$.

 TThe procedure in giving the Stanford Einct Scale was to indude we tests from the X -yezt ierel through the your wherr alf test were filed. Tess beiow the Xegear lerel were giver when newerary to extabiost a bacal ate

 In 4 of the 65 cases only the starred sestry were giveth.
 The correlarion between the scorrs on the complete scale and the seores on che abbergited
 163,6, for the sarred actie 1654.

 Sint "xatter" of Stanford Buact seoren is msyilly considered in important index in deatiog

[^39]: T The combined scores on the Oral and Pnnted Absurdizies Tert correlatel Girly highly With the scores on the Sanford Binct Sale- 耳. 75 with a standand error of 07 for 40 Casex.
 analyses of the errors made ont the Gray Ocal Rradug Test, Sets II, IIt, and IV, showed: 55 per cent mispronunctitions, 22 per cent regetuing, 12 per cent otnissions, and in per cent insertions.

 DThe Chapman Test was unfortunately given to oaly 42 eases, and this mall number may actount for some iffegulatities in the dustribution.

[^40]:

[^41]: ginning of the stuif, hapened bo be given to a relatively moller proportion of the pren and

 mosely from the Orthoradse Hagitat, that is, the group winch rended of give the bighest giners

[^42]: The slight'y higher mean for wromen on the Barr Scale is not an alrogether satisfactory eriterion becuuse the figure may be artifarilly rased ty the alung of of 37 given the bousewives. There is no reason to suppost, however, that the mean educational level for wamen is not so accurate as that for men. and the equalicy of the rwo groups an the regard justifies direct comparison

 IIt is true, however, that the threc ests in whach the nean spere for women was slighty tupenor to that for men- the Gral Analogacs the Thozndake Wford Enowledge, and the Let-ters-were all verbal tests, a0i that fouz of the five sub tests of the Staniord Buat in which the women excelled the men-Rexding and Free Associatoon at Year X, Dussected Sentences at Year XII, and Diffrences berween Abstact Words at Year XVI-were also verbal.

[^43]: 1 The formula used was:
 Was:

 Kellcy. Comparable Meanoref. 1. Edac. Pspchal. 1914, 5, 599-595.

[^44]: ：Op．cir，Table V_{y} A．

[^45]: The relatuve performance Ievels on educatonal achievement and intelagence tests will be analyzed in the section on Educaton and Test Performance in Chapter IX, where a number of grapha are preseared showing vanout performante leveis an individual cases.

[^46]: : Sisce the numbers were in each case comparatively small, the standard errors wers high. Each correlation was tested for mgificance by Fisher's formola (op. cil.. Table V, A) and was taken to indicate the prexence of an acaul relawionship Fetacen the two rariables onff if it had a P value of oz or lexs for a sroup of the ginta size.

[^47]: －Stanford Binet ove
 t Edizuion outh

[^48]: © Houscwires are not clasoified in any of the Tausxig groups, so that the subyects in this analysis are mosily men.

[^49]: - A few cortelations whith the Canceilation Test were talculated in order to deternins mbat relationships existed betwines this cotnyaratively simple ten and the mone mompter intelitente tests. The corrchaton wath the Sasalord Bunce Scale was $+23=14$ for 96 casex, with the
 $\pm .16$ for 40 czes

 T The bighest correlarion writh the Sunford Bixet is that of the Chafonan Reading-Compre* hensjon Test: $+83 \pm .05$ for 42 cases.

[^50]: 10 Op.ctt, 38.
 ${ }^{11}$ F. Gav, A Study of Performence Tesff, Erit. I. Psphbl. Gen. Set., 19at-25, 15. 3 Sy 386.
 if M. R. Worthington. A Srady of Some Conemonly Used Performance Tests, I. Afpt. Pyychol, 1926, 10, 221

[^51]: ${ }^{14}$ The bighest of the correlatoms calculaced for the Complezon Bera was that with the Chapman Reading-Comprehension Test' $+85 \pm 05$ for 33 cases
 ${ }^{15}$ The corcelaton between the Completion Beta and whe Drawng Completion Tert of the Piptner Non-Langusge is $+47 \pm 12$ for 46 cascs
 ${ }^{13}$ The highest correlation wuth tive combned tume and cetor sores on the Gray Oral Reading Test. Sct JV. was that of the Thornilke Wond Knoweledige, $+69 \pm .08$ for 44 cascs The correlation between the Gray Oral Reading and the Stanford Banet Vocabuiary was lower: $+57 \pm .10$ for 49 cases

[^52]: "A similar statement boids for the corresponding correlatuons for the Chapman ReadingComprebeagion Test, but the correlarons of this werves were an general a Eve points higher than those with the Thorndike MoCall.
 it The correlation berwen the Tharadike McCall and the Anthmetic Computatoon Testr is not materially changed when age is partaled out (+67 \#es): it is lower when education is partialed out $(+.46 \pm 12)$.

[^53]: ${ }^{10}$ The highest corrclations found far the Onal Analogien ate with the Completion Bern, the Oral Absurdities, and the Stanford liner Scale, but on the whole the two analogies resth, which correlate to the ertens of $+8.5 \pm 05$, difter comparanvely hitle in their relatonaskigs to other tests. The pairs of scatter diagrams, as well as the pairs of correlation coefficients, are simitar.

[^54]: 50 Morgathat found 2 correirion of + 36 becween the Funtars Non-tanguge ind the Porters Mare. (OP. Cis. 45.)

 21 The total sonre on the Pamer Non-langmage Test, whenever given, itoludes the weorct on all sub-tests. Sub-test 2 was not sudied in relation to the other tests, howrerr, bepure it gave a skewed distriberoon witich skowedi hax it was inadequats at ebe adutr level-

 27 Op art. 33-

[^55]: ${ }^{23}$ The correlation of $+147 \pm 12$ between the Goodenough Drawiag and the Draving Completion Tert of the Pinter Nondanguage is also seliable.

[^56]: Ohber teas wete givers had too greas difficulty in readsng to anternpt the Compleron Betr; but if these cases were added at che lower end of the distribution fir the Complenon Beta and a median calculated, the median would stll Gil at a mental age above 15 . In short, the hagher level on the Completion Beta is not to be explamed on the biss of a selected grous.

[^57]:
 3 The interfretation of the doclines with yge on wome of these tests may be quetionct on the ground that the ofder subjects ane kandienpyed ly the less of cerrin secondary abitities, such as maisfactory understandmg of diretions of ready adaptaion to unusul mitutions Data on these pointa from the Stanforl Maturity Study show that about the sa me pegrive

[^58]: FThis point was seleated arburarity as the ows which gate the most satisfetory distnburion of casces for clarity in the graphs,

[^59]: E The cducational level is shown at the extreme right of each grapls Note that cases from more than one school grade appear min Figures $14,11,13$, and 14 .

[^60]: "The Pintmer Non.Language Test asaincinded in the analysis to give an addutional andex of incelligence. Jts correlation what education, $+.56 \neq 10$, is almost as high as that of the Sanford Einet, $+.62 \pm 08$. In 7 of the ag cases the Ievels on the Biact and the Putner are less than 5 sigma apart. Among the remaiping cases there is one where the vanows tests fall bearer the Pintner than the Binet and 7 others where wome of the tests fall nearer the Pintner and some nearer the Binet. To 1 centan degrec, thereforc, the Ievel on the Pintincr may posshlly indicate ablunes which accocant for the irregularity in cases where the various performances da not approximate the level of the \$ranford hanef; bat so mamy different factors are, of course, involved that it is difficult to entimate the effect of one or two in asolation.

[^61]: 12 For inmplacity in presentation the statements made in this and the followirg paragrapbs are based on the most important tests of the battery In general, however, they apply to all of the tests reported. For exarnple, ine Oral Absurdities shows the characteristiss of the other language lests reported here from the point of wew of the ctrrelauonal findingi. Sirmiarly, the Seguin and the test of Drawirg a Chair show characteristics like those of the other rather specific non'verbal evsts, for example, the Goodenough Drawing.
 ${ }^{32}$ High correlations also appear between the Thoradike MicCall Rearing and the Chaponan Reading-Comprehension, and betwecn the Oral and Printed Anslogres Test.

[^62]: 1 Wcistaburg and McBride, op. cif- 577-578.

[^63]: ${ }^{2}$ Ibid . chaps. XVI and XYIII.

[^64]: * One cbange on the Oral Form was made brfore the sest wis given: Item "blade : kaife at tine:-_" was changed to "knife - blate - fork = - ". so as to simplafy the vocabulary problem. "Prong" and "points" were aceepted an satusfactory answers

[^65]: 371-38工.

 When the study was begisn the Completion Exercises could be obtaned from the Teachers College Bureau of Pubzeations When they weat out of priat shortly afterwatd, the tests were mula
 ${ }^{3}$ Terman, The Measurement of Eatchigenct, 1916, 214-234.
 ${ }^{1}$ Published by Buread of Pubicawons. Teachers College, Columbua University. A sheet of directions for giving and scomat the test comes with the test blanks.

[^66]: ₹ Tcrman. op. cit., $159-34$.
 13, 125-145.

 Batlard quotes one of Whippleis and ane of Terkes' restu, both of which were used.

[^67]: * Published by C. H. Stoelcing Chicago

 10 Published by the Fublic Suhool Pubishimg Company, Elocmingron, ifinoiss
 II A number of these also took \$et Ifi, but standind errors were ma bigh to estimate the score on one set from that on amother: 2616 for IV mimated fom TIT, and 976 for III mil mated from IV.
 ${ }^{12}$ Fublished by Texchers Colicgr Eurean of Publications, Columbia Iniversity. A scorigg shent cermes witb the terts

[^68]: ${ }^{20}$ Pintrer, A Non-Lemguage Growp Inteligence Tert, J. Appl Psychol, 19:9. 3, 199-214. Test manual and booklets published by College Book Compang, Columbus, Ohio.
 21 Published by C. H. Stociting Cornpany. Chicaso; Tear No 2700 g.

 ${ }^{22}$ F. Kuhlmann, A Hanabook of Mencel Tests, 192ㄹ. 134-
 ${ }^{22}$ Goodenough, op, iti., 87-itio.

